1
|
Iacobescu GL, Corlatescu AD, Serban B, Spiridonica R, Costin HP, Cirstoiu C. Genetics and Molecular Pathogenesis of the Chondrosarcoma: A Review of the Literature. Curr Issues Mol Biol 2024; 46:12658-12671. [PMID: 39590345 PMCID: PMC11593320 DOI: 10.3390/cimb46110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The chondrosarcoma, a cartilage-forming bone tumor, presents significant clinical challenges due to its resistance to chemotherapy and radiotherapy. Surgical excision remains the primary treatment, but high-grade chondrosarcomas are prone to recurrence and metastasis, necessitating the identification of reliable biomarkers for diagnosis and prognosis. This review explores the genetic alterations and molecular pathways involved in chondrosarcoma pathogenesis. These markers show promise in distinguishing between benign enchondromas and malignant chondrosarcomas, assessing tumor aggressiveness, and guiding treatment. While these advancements offer hope for more personalized and targeted therapeutic strategies, further clinical validation of these biomarkers is essential to improve prognostic accuracy and patient outcomes in chondrosarcoma management.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Bogdan Serban
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Horia Petre Costin
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Catalin Cirstoiu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
2
|
Duan H, Li J, Ma J, Chen T, Zhang H, Shang G. Global research development of chondrosarcoma from 2003 to 2022: a bibliometric analysis. Front Pharmacol 2024; 15:1431958. [PMID: 39156101 PMCID: PMC11327078 DOI: 10.3389/fphar.2024.1431958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Chondrosarcomas are common primary malignant bone tumors; however, comprehensive bibliometric analysis in this field has not yet been conducted. Therefore, this study aimed to explore the research hotspots and trends in the field of chondrosarcoma through bibliometric analysis to help researchers understand the current status and direction of research in the field. Methods Articles and reviews related to chondrosarcoma published between 2003 and 2022 were retrieved from the Web of Science. Countries, institutions, authors, journals, references, and keywords in this field were visualized and analyzed using CtieSpace and VOSviewer software. Results Between 2003 and 2022, 4,149 relevant articles were found. The number of articles published on chondrosarcoma has increased significantly annually, mainly from 569 institutions in China and the United States, and 81 in other countries. In total, 904 authors participated in the publication of studies related to chondrosarcomas. Over the past 20 years, articles on chondrosarcoma have been published in 958 academic journals, with Skeletal Radiology having the highest number of publications. Furthermore, keywords such as "gene expression," "radiotherapy," "experience," and "apoptosis" have been popular in recent years. Conclusion Over the past 20 years, the global trend in chondrosarcoma research has primarily been clinical research, with basic research as a supplement. In the future, communication and exchange between countries and institutions should be strengthened. Further, the future main research hotspots in the field of chondrosarcoma include mutated genes and signaling pathways, precision surgical treatment, proton therapy, radiation therapy, chemotherapy, immunotherapy, and other aspects.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci 2022; 23:ijms23031096. [PMID: 35163019 PMCID: PMC8834928 DOI: 10.3390/ijms23031096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Due to resistance to standard anticancer agents, it is difficult to control the disease progression in patients with metastatic or unresectable chondrosarcoma. Novel therapeutic approaches, such as molecule-targeting drugs and immunotherapy, are required to improve clinical outcomes in patients with advanced chondrosarcoma. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including IDH1/2 and COL2A1. Several molecule-targeting agents and immunotherapies have shown favorable antitumor activity in clinical studies in patients with advanced chondrosarcomas. This review summarizes recent basic studies on biomarkers and molecular targets and recent clinical studies on the treatment of chondrosarcomas.
Collapse
|
5
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
6
|
Micaily I, Roche M, Ibrahim MY, Martinez-Outschoorn U, Mallick AB. Metabolic Pathways and Targets in Chondrosarcoma. Front Oncol 2021; 11:772263. [PMID: 34938658 PMCID: PMC8685273 DOI: 10.3389/fonc.2021.772263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrosarcomas are the second most common primary bone malignancy. Chondrosarcomas are characterized by the production of cartilaginous matrix and are generally resistant to radiation and chemotherapy and the outcomes are overall poor. Hence, there is strong interest in determining mechanisms of cancer aggressiveness and therapeutic resistance in chondrosarcomas. There are metabolic alterations in chondrosarcoma that are linked to the epigenetic state and tumor microenvironment that drive treatment resistance. This review focuses on metabolic changes in chondrosarcoma, and the relationship between signaling via isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), hedgehog, PI3K-mTOR-AKT, and SRC, as well as histone acetylation and angiogenesis. Also, potential treatment strategies targeting metabolism will be discussed including potential synergy with immunotherapies.
Collapse
Affiliation(s)
- Ida Micaily
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Megan Roche
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mohammad Y. Ibrahim
- Saint Francis Medical Center, Seton Hall University, Trenton, NJ, United States
| | | | - Atrayee Basu Mallick
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Kroonen JS, Kruisselbrink AB, Briaire-de Bruijn IH, Olaofe OO, Bovée JVMG, Vertegaal ACO. SUMOylation Is Associated with Aggressive Behavior in Chondrosarcoma of Bone. Cancers (Basel) 2021; 13:cancers13153823. [PMID: 34359724 PMCID: PMC8345166 DOI: 10.3390/cancers13153823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary SUMO is a ubiquitin-like post-translational modification important for many cellular processes and is suggested to play a role in cancer cell cycle progression. The aim of our study is to understand the role of SUMOylation in tumor progression and aggressiveness. Chondrosarcoma of bone was employed as a model to investigate if SUMOylation contributes to its aggressiveness. We confirmed that SUMO expression levels correlate with aggressiveness of chondrosarcoma and disease outcome. Inhibition of SUMOylation showed promising effects on reduction of chondrosarcoma growth in vitro. Our study implies that SUMO expression could be used as a potential biomarker for disease outcome in chondrosarcoma. Abstract Multiple components of the SUMOylation machinery are deregulated in various cancers and could represent potential therapeutic targets. Understanding the role of SUMOylation in tumor progression and aggressiveness would increase our insight in the role of SUMO in cancer and clarify its potential as a therapeutic target. Here we investigate SUMO in relation to conventional chondrosarcomas, which are malignant cartilage forming tumors of the bone. Aggressiveness of chondrosarcoma increases with increasing histological grade, and a multistep progression model is assumed. High-grade chondrosarcomas have acquired an increased number of genetic alterations. Using immunohistochemistry on tissue microarrays (TMA) containing 137 chondrosarcomas, we showed that higher expression of SUMO1 and SUMO2/3 correlates with increased histological grade. In addition, high SUMO2/3 expression was associated with decreased overall survival chances (p = 0. 0312) in chondrosarcoma patients as determined by log-rank analysis and Cox regression. Various chondrosarcoma cell lines (n = 7), especially those derived from dedifferentiated chondrosarcoma, were sensitive to SUMO inhibition in vitro. Mechanistically, we found that SUMO E1 inhibition interferes with cell division and as a consequence DNA bridges are frequently formed between daughter cells. In conclusion, SUMO expression could potentially serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Jessie S. Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Olaejirinde O. Olaofe
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
- Correspondence: (J.V.M.G.B.); (A.C.O.V.)
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence: (J.V.M.G.B.); (A.C.O.V.)
| |
Collapse
|
8
|
Esperança-Martins M, Fernandes I, Soares do Brito J, Macedo D, Vasques H, Serafim T, Costa L, Dias S. Sarcoma Metabolomics: Current Horizons and Future Perspectives. Cells 2021; 10:1432. [PMID: 34201149 PMCID: PMC8226523 DOI: 10.3390/cells10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The vast array of metabolic adaptations that cancer cells are capable of assuming, not only support their biosynthetic activity, but also fulfill their bioenergetic demands and keep their intracellular reduction-oxidation (redox) balance. Spotlight has recently been placed on the energy metabolism reprogramming strategies employed by cancer cells to proliferate. Knowledge regarding soft tissue and bone sarcomas metabolome is relatively sparse. Further characterization of sarcoma metabolic landscape may pave the way for diagnostic refinement and new therapeutic target identification, with benefit to sarcoma patients. This review covers the state-of-the-art knowledge on cancer metabolomics and explores in detail the most recent evidence on soft tissue and bone sarcoma metabolomics.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Joaquim Soares do Brito
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- Centro Hospitalar Universitário Lisboa Norte, Orthopedics and Traumatology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal
| | - Daniela Macedo
- Medical Oncology Department, Hospital Lusíadas Lisboa, 1500-458 Lisboa, Portugal;
| | - Hugo Vasques
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- General Surgery Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisboa, Portugal
| | - Teresa Serafim
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
| | - Luís Costa
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| |
Collapse
|
9
|
Madda R, Chen CM, Chen CF, Wang JY, Wu PK, Chen WM. Effect of Cryoablation Treatment on the Protein Expression Profile of Low-Grade Central Chondrosarcoma Identified by LC-ESI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1469-1489. [PMID: 34003650 DOI: 10.1021/jasms.1c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of cryoablation/cryosurgery in treating solid tumors has been proven as a unique technique that uses lethal temperatures to destroy the tumors and impart better functions for the affected organs. This novel technique recently demonstrated the best clinical results in chondrosarcoma (CSA) with faster recovery, less recurrence, and metastasis. Due to the resistant nature of CSA to chemo and radiation therapy, cryoablation comes to light as the best alternative approach. Therefore, for the first time, we aimed to compare CSA-untreated with cryoablation treated samples to discover some potential markers that may provide various clues in terms of diagnosis and pathophysiology and may facilitate the development of novel methods to treat sarcoma efficiently. To find the altered proteins among both groups, a mass-based label-free approach was employed and identified a total of 160 significantly altered proteins. Among these, 138 proteins were dysregulated with <1- to -0.1-fold, 18 proteins were up-regulated with >3 folds, and four proteins were similarly expressed in the untreated group compared to the treated. Interestingly, the differential expressions of proteins from the untreated group showed contrast expressions in the treated group. Furthermore, the functional enrichment analysis revealed that most of the identified proteins from this study were associated with various significant pathways such as glycolysis, MAPK activation, PI3K-Akt signaling, extracellular matrix degradation, etc. In addition, two protein expressions, such as fibronectin and annexin-1, were validated by immunoblot analysis. Therefore, this study signifies the most comprehensive discovery of altered protein expressions to date and the first large-scale detection of protein profiles from CSA-cryoablation treated compared to untreated. This work may serve as the basis for future research to open novel treatment options for chondrosarcoma.
Collapse
Affiliation(s)
- Rashmi Madda
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Cheng-Fong Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Jir-You Wang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Po-Kuei Wu
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Wei-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| |
Collapse
|
10
|
Traylor JI, Pernik MN, Plitt AR, Lim M, Garzon-Muvdi T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers (Basel) 2021; 13:2408. [PMID: 34067530 PMCID: PMC8156915 DOI: 10.3390/cancers13102408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Chordomas and chondrosarcomas are rare but devastating neoplasms that are characterized by chemoradiation resistance. For both tumors, surgical resection is the cornerstone of management. Immunotherapy agents are increasingly improving outcomes in multiple cancer subtypes and are being explored in chordoma and chondrosarcoma alike. In chordoma, brachyury has been identified as a prominent biomarker and potential molecular immunotherapy target as well as PD-1 inhibition. While studies on immunotherapy in chondrosarcoma are sparse, there is emerging evidence and ongoing clinical trials for PD-1 as well as IDH inhibitors. This review highlights potential biomarkers and targets for immunotherapy in chordoma and chondrosarcoma, as well as current clinical evidence and ongoing trials.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Aaron R. Plitt
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA;
| | - Tomas Garzon-Muvdi
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| |
Collapse
|
11
|
Abstract
Bone tumors are a rare and heterogeneous group of neoplasms that occur in the bone. The diversity and considerable morphologic overlap of bone tumors with other mesenchymal and nonmesenchymal bone lesions can complicate diagnosis. Accurate histologic diagnosis is crucial for appropriate management and prognostication. Since the publication of the fourth edition of the World Health Organization (WHO) classification of tumors of soft tissue and bone in 2013, significant advances have been made in our understanding of bone tumor molecular biology, classification, prognostication, and treatment. Detection of tumor-specific molecular alterations can facilitate the accurate diagnosis of histologically challenging cases. The fifth edition of the 2020 WHO classification of tumors of soft tissue and bone tumors provides an updated classification scheme and essential diagnostic criteria for bone tumors. Herein, we summarize these updates, focusing on major changes in each category of bone tumor, the newly described tumor entities and subtypes of existing tumor types, and newly described molecular and genetic data.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX
| |
Collapse
|
12
|
Palubeckaitė I, Venneker S, Briaire-de Bruijn IH, van den Akker BE, Krol AD, Gelderblom H, Bovée JVMG. Selection of Effective Therapies Using Three-Dimensional in vitro Modeling of Chondrosarcoma. Front Mol Biosci 2020; 7:566291. [PMID: 33425984 PMCID: PMC7793672 DOI: 10.3389/fmolb.2020.566291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose: Chondrosarcomas are a group of cartilaginous malignant neoplasms characterized by the deposition of chondrogenic extracellular matrix. Surgical resection is currently the only curative treatment option, due to their high resistance to conventional chemotherapy and radiotherapy. Novel therapeutic treatment options may improve outcome. Predominantly used cell line monolayer in vitro models lack in vivo complexity, such as the presence of extracellular matrix, and differing oxygen access. Hence, we aimed to improve pre-clinical chondrosarcoma research by developing an alginate-based 3D cell culture model. Method: An alginate scaffold was applied to generate spheroids of three chondrosarcoma cell lines (CH2879, JJ012, SW1353). Morphological, histological and immunohistochemical assessment of the spheroids were used to characterize the chondrosarcoma model. Presto blue assay, morphological and immunohistochemical assessment were applied to assess spheroid response to a panel of chemotherapeutics and targeted therapies, which was compared to conventional 2D monolayer models. Synergistic effect of doxorubicin and ABT-737 (Bcl-2 inhibitor) was compared between monolayer and spheroid models using excess over Bliss. A 3D colony formation assay was developed for assessment of radiotherapy response. Results: Chondrosarcoma spheroids produced chondrogenic matrix and remained proliferative after 2 weeks of culture. When treated with chemotherapeutics, the spheroids were more resistant than their monolayer counterparts, in line with animal models and clinical data. Moreover, for sapanisertib (mTOR inhibitor) treatment, a recovery in chondrosarcoma growth, previously observed in mice models, was also observed using long-term treatment. Morphological assessment was useful in the case of YM-155 (survivin inhibitor) treatment where a fraction of the spheroids underwent cell death, however a large fraction remained proliferative and unaffected. Synergy was less pronounced in 3D compared to 2D. A 3D clonogenic assay confirmed increased resistance to radiotherapy in 3D chondrosarcoma spheroids. Conclusion: We demonstrate that the chondrosarcoma alginate spheroid model is more representative of chondrosarcoma in vivo and should be used instead of the monolayer model for therapy testing. Improved selection at in vitro stage of therapeutic testing will increase the amount of information available for experimental design of in vivo animal testing and later, clinical stages. This can potentially lead to increased likelihood of approval and success at clinical trials.
Collapse
Affiliation(s)
- Ieva Palubeckaitė
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Sanne Venneker
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Augustinus D Krol
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Roche ME, Lin Z, Whitaker-Menezes D, Zhan T, Szuhai K, Bovee JVMG, Abraham JA, Jiang W, Martinez-Outschoorn U, Basu-Mallick A. Translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) facilitates cancer aggressiveness and therapeutic resistance in chondrosarcoma. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165962. [PMID: 32920118 DOI: 10.1016/j.bbadis.2020.165962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
Chondrosarcoma is the second most common primary bone malignancy, representing one fourth of all primary bone sarcomas. It is typically resistant to radiation and chemotherapy treatments. However, the molecular mechanisms that contribute to cancer aggressiveness in chondrosarcomas remain poorly characterized. Here, we studied the role of mitochondrial transporters in chondrosarcoma aggressiveness including chemotherapy resistance. Histological grade along with stage are the most important prognostic biomarkers in chondrosarcoma. We found that high-grade human chondrosarcoma tumors have higher expression of the mitochondrial protein, translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), compared to low-grade tumors. TOMM20 overexpression in human chondrosarcoma cells induces chondrosarcoma tumor growth in vivo. TOMM20 drives proliferation, resistance to apoptosis and chemotherapy resistance. Also, TOMM20 induces markers of epithelial to mesenchymal transition (EMT) and metabolic reprogramming in these mesenchymal tumors. In conclusion, TOMM20 drives chondrosarcoma aggressiveness and resistance to chemotherapy.
Collapse
Affiliation(s)
- Megan E Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Tingting Zhan
- Department of Pharmacology, Division of Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Karoly Szuhai
- Department of Pathology, Leiden University, the Netherlands
| | | | - John A Abraham
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Wei Jiang
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| | - Atrayee Basu-Mallick
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
14
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
15
|
de Jong Y, Bennani F, van Oosterwijk JG, Alberti G, Baranski Z, Wijers-Koster P, Venneker S, Briaire-de Bruijn IH, van de Akker BE, Baelde H, Cleton-Jansen AM, van de Water B, Danen EH, Bovée JV. A screening-based approach identifies cell cycle regulators AURKA, CHK1 and PLK1 as targetable regulators of chondrosarcoma cell survival. J Bone Oncol 2019; 19:100268. [PMID: 31832331 PMCID: PMC6889735 DOI: 10.1016/j.jbo.2019.100268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Chondrosarcomas are malignant cartilage tumors that are relatively resistant towards conventional therapeutic approaches. Kinase inhibitors have been investigated and shown successful for several different cancer types. In this study we aimed at identifying kinase inhibitors that inhibit the survival of chondrosarcoma cells and thereby serve as new potential therapeutic strategies to treat chondrosarcoma patients. An siRNA screen targeting 779 different kinases was conducted in JJ012 chondrosarcoma cells in parallel with a compound screen consisting of 273 kinase inhibitors in JJ012, SW1353 and CH2879 chondrosarcoma cell lines. AURKA, CHK1 and PLK1 were identified as most promising targets and validated further in a more comprehensive panel of chondrosarcoma cell lines. Dose response curves were performed using tyrosine kinase inhibitors: MK-5108 (AURKA), LY2603618 (CHK1) and Volasertib (PLK1) using viability assays and cell cycle analysis. Apoptosis was measured at 24 h after treatment using a caspase 3/7 assay. Finally, chondrosarcoma patient samples (N = =34) were used to examine the correlation between AURKA, CHK1 and PLK1 RNA expression and documented patient survival. Dose dependent decreases in viability were observed in chondrosarcoma cell lines after treatment with MK-5108, LY2603618 and volasertib, with cell lines showing highest sensitivity to PLK1 inhibition. In addition increased sensitivity to conventional chemotherapy was observed after CHK1 inhibition in a subset of the cell lines. Interestingly, whereas AURKA and CHK1 were both expressed in chondrosarcoma patient samples, PLK1 expression was found to be low compared to normal cartilage. Analysis of patient samples revealed that high CHK1 RNA expression correlated with a worse overall survival. AURKA, CHK1 and PLK1 are identified as important survival genes in chondrosarcoma cell lines. Although further research is needed to validate these findings, inhibiting CHK1 seems to be the most promising potential therapeutic target for patients with chondrosarcoma.
Collapse
Affiliation(s)
- Yvonne de Jong
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Fairuz Bennani
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Jolieke G. van Oosterwijk
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Gaia Alberti
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Zuzanna Baranski
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Pauline Wijers-Koster
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Sanne Venneker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Brendy E. van de Akker
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Erik H.J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, L1-Q, 2300 RC Leiden, the Netherlands
- Corresponding author.
| |
Collapse
|