1
|
Cai Q, Li Z, Li B, Jiang J, Li X, Meng W, Zhu S. Precise Diagnosis and Therapy of Bone Cancer Using Near-Infrared Lights. Front Bioeng Biotechnol 2021; 9:771153. [PMID: 34869286 PMCID: PMC8636834 DOI: 10.3389/fbioe.2021.771153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bone is a preferred site for both primary and metastasis tumors. Current diagnosis of osteopathia typically relies on noninvasive skeleton radiography technology. However, due to the limited resolution of ionizing radiation, accurate diagnosis and effective identification impairment areas are still lacking. Near-infrared (NIR) bioimaging, especially in the NIR-II (1000-1700 nm) regions, can provide high sensitivity and spatiotemporal resolution bioimaging compared to the conventional radiography. Thus, NIR bioimaging affords intraoperative visualization and imaging-guided surgery, aiming to overcome challenges associated with theranostics of osteopathia and bone tumors. The present review aimed to summarize the latest evidence on the use of NIR probes for the targeting bone imaging. We further highlight the recent advances in bone photoX (X presents thermal, dynamic, and immuno) therapy through NIR probes, in particular combination with other customized therapeutic agents could provide high-efficiency treatment for bone tumors.
Collapse
Affiliation(s)
- Qing Cai
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Zuntai Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Baosheng Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayang Jiang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyu Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiyan Meng
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhai C, Schreiber CL, Padilla-Coley S, Oliver AG, Smith BD. Fluorescent Self-Threaded Peptide Probes for Biological Imaging. Angew Chem Int Ed Engl 2020; 59:23740-23747. [PMID: 32930474 PMCID: PMC7736561 DOI: 10.1002/anie.202009599] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Indexed: 12/19/2022]
Abstract
A general synthetic method creates a new class of covalently connected, self-threaded, fluorescent molecular probes with figure-eight topology, an encapsulated deep-red fluorophore, and two peripheral peptide loops. The globular molecular shape and rigidified peptide loops enhance imaging performance by promoting water solubility, eliminating probe self-aggregation, and increasing probe stability. Moreover, the peptide loops determine the affinity and selectivity for targets within complex biological samples such as cell culture, tissue histology slices, or living subjects. For example, a probe with cell-penetrating peptide loops targets the surface of cell plasma membranes, whereas, a probe with bone-targeting peptide loops selectively stains the skeleton within a living mouse. The unique combination of bright deep-red fluorescence, high stability, and predictable peptide-based targeting is ideal for photon intense fluorescence microscopy and biological imaging.
Collapse
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Zhai C, Schreiber CL, Padilla‐Coley S, Oliver AG, Smith BD. Fluorescent Self‐Threaded Peptide Probes for Biological Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Sasha Padilla‐Coley
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| |
Collapse
|
4
|
Cho N, Ko S, Shokeen M. Preclinical Development of Near-Infrared-Labeled CD38-Targeted Daratumumab for Optical Imaging of CD38 in Multiple Myeloma. Mol Imaging Biol 2020; 23:186-195. [PMID: 32964391 DOI: 10.1007/s11307-020-01542-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Cluster of differentiation 38 (CD38) is a promising therapeutic target in multiple myeloma (MM) patients and has resulted in the development of several CD38 immunotherapies. Current methods to evaluate CD38 expression in the preclinical setting include ex vivo flow cytometry and immunohistochemistry, which can be cumbersome and do not give whole-body information. In vivo imaging technologies such as positron emission tomography rely on decay of radioisotopes, limiting the number of molecular interactions observed at any given time point. Here, we demonstrate the use of near-infrared (NIR) fluorescence imaging for spatiotemporal monitoring of CD38 expression in preclinical MM using the anti-CD38 daratumumab (DARA) conjugated to the NIR fluorophore IRDye800CW (DARA-IRDye800). PROCEDURES Stability studies with human serum and binding assays with human myeloma cells were performed with DARA-IRDye800. Immunocompromised mice with intra- and extramedullary tumors (n = 5/group) were administered with DARA-IRDye800 for in vivo imaging up to 7 days after injection. Ex vivo biodistribution and flow cytometry studies were performed to validate in vivo imaging results. A separate therapy study was performed in mice with intramedullary tumors that were treated and not treated with DARA at a therapeutic dose (n = 7/group). DARA-IRDye800 was administered for subsequent in vivo and ex vivo imaging in both cohorts of mice. RESULTS DARA-IRDye800 maintained stability and had high affinity for CD38 (KD = 3.5 ± 0.05 nM). DARA-IRDye800 demonstrated a 5- and 18-fold increase in contrast in tumor-bearing regions of mice with extra- and intramedullary MM. Finally, mice treated with therapeutic doses of DARA and imaged with DARA-IRDye800 showed an 11-fold decrease in fluorescence intensities in vivo compared with untreated controls. CONCLUSIONS Our studies establish DARA-IRDye800 as a promising contrast agent for preclinical evaluation of CD38 expression and for further investigating myeloma engraftment and kinetics in relation to anti-CD38 therapies.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sooah Ko
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Cao F, Chen J, Yu D, Wang S, Xu X, Liu J, Han Z, Huang B, Gu Y, Choy KL, Zeng H. Bionic Detectors Based on Low-Bandgap Inorganic Perovskite for Selective NIR-I Photon Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905362. [PMID: 31858634 DOI: 10.1002/adma.201905362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Indexed: 05/26/2023]
Abstract
Fluorescence imaging with photodetectors (PDs) toward near-infrared I (NIR-I) photons (700-900 nm), the so-called "optical window" in organisms, has provided an important path for tracing biological processes in vivo. With both excitation photons and fluorescence photons in this narrow range, a stringent requirement arises that the fluorescence signal should be efficiently differentiated for effective sensing, which cannot be fulfilled by common PDs with a broadband response such as Si-based PDs. In this work, delicate optical microcavities are designed to develop a series of bionic PDs with selective response to NIR-I photons, the merits of a narrowband response with a full width at half maximum (FWHM) of <50 nm, and tunability to cover the NIR-I range are highlighted. Inorganic halide perovskite CsPb0.5 Sn0.5 I3 is chosen as the photoactive layer with comprehensive bandgap and film engineering. As a result, these bionic PDs offer a signal/noise ratio of ≈106 , a large bandwidth of 543 kHz and an ultralow detection limit of 0.33 nW. Meanwhile, the peak responsivity (R) and detectivity (D*) reach up to 270 mA W-1 and 5.4 × 1014 Jones, respectively. Finally, proof-of-concept NIR-I imaging using the PDs is demonstrated to show great promise in real-life application.
Collapse
Affiliation(s)
- Fei Cao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingde Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Dejian Yu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiaobao Xu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiaxin Liu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zeyao Han
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bo Huang
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yu Gu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kwang Leong Choy
- Institute for Materials Discovery, University College London, Roberts Building, Malet Place, London, WC1E 7JE, UK
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|