1
|
Martin-Giacalone BA, Richard MA, Scheurer ME, Khan J, Sok P, Shetty PB, Chanock SJ, Li SA, Yeager M, Marquez-Do DA, Barkauskas DA, Hall D, McEvoy MT, Brown AL, Sabo A, Scheet P, Huff CD, Skapek SX, Hawkins DS, Venkatramani R, Mirabello L, Lupo PJ. Germline genetic variants and pediatric rhabdomyosarcoma outcomes: a report from the Children's Oncology Group. J Natl Cancer Inst 2023; 115:733-741. [PMID: 36951526 PMCID: PMC10248851 DOI: 10.1093/jnci/djad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Relative to other pediatric cancers, survival for rhabdomyosarcoma (RMS) has not improved in recent decades, suggesting the need to enhance risk stratification. Therefore, we conducted a genome-wide association study for event-free survival (EFS) and overall survival (OS) to identify genetic variants associated with outcomes in individuals with RMS. METHODS The study included 920 individuals with newly diagnosed RMS who were enrolled in Children's Oncology Group protocols. To assess the association of each single nucleotide polymorphism (SNP) with EFS and OS, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) using multivariable Cox proportional hazards models, adjusted for clinical covariates. All statistical tests were two sided. We also performed stratified analyses by histological subtype (alveolar and embryonal RMS) and carried out sensitivity analyses of statistically significant SNPs by PAX3/7-FOXO1 fusion status and genetic ancestry group. RESULTS We identified that rs17321084 was associated with worse EFS (HR = 2.01, 95% CI = 1.59 to 2.53, P = 5.39 × 10-9) and rs10094840 was associated with worse OS (HR = 1.84, 95% CI = 1.48 to 2.27, P = 2.13 × 10-8). Using publicly available data, we found that rs17321084 lies in a binding region for transcription factors GATA2 and GATA3, and rs10094840 is associated with SPAG1 and RNF19A expression. We also identified that CTNNA3 rs2135732 (HR = 3.75, 95% CI = 2.34 to 5.99, P = 3.54 × 10-8) and MED31 rs74504320 (HR = 3.21, 95% CI = 2.12 to 4.86, P = 3.60 × 10-8) were associated with worse OS among individuals with alveolar RMS. CONCLUSIONS We demonstrated that common germline variants are associated with EFS and OS among individuals with RMS. Additional replication and investigation of these SNP effects may further support their consideration in risk stratification protocols.
Collapse
Affiliation(s)
- Bailey A Martin-Giacalone
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Melissa A Richard
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Scheurer
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pagna Sok
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Priya B Shetty
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Meredith Yeager
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah A Marquez-Do
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Donald A Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- QuadW Childhood Sarcoma Biostatistics and Annotation Office, Children’s Oncology Group, Monrovia, CA, USA
| | - David Hall
- QuadW Childhood Sarcoma Biostatistics and Annotation Office, Children’s Oncology Group, Monrovia, CA, USA
| | - Matthew T McEvoy
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Austin L Brown
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas S Hawkins
- Division of Hematology-Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Rajkumar Venkatramani
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MA, USA
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Zhang Z, Ji W, Huang J, Zhang Y, Zhou Y, Zhang J, Dong Y, Yuan T, Yang Q, Ding X, Tang L, Li H, Yin J, Wang Y, Ji T, Fei J, Zhang B, Chen P, Hu H. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients. Clin Transl Med 2022; 12:e1072. [PMID: 36305631 PMCID: PMC9615475 DOI: 10.1002/ctm2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Malignant pleural effusion (MPE) is an adverse prognostic factor in patients with osteoblastic osteosarcoma; however, the cellular contexts of MPE are largely unknown. EXPERIMENTAL DESIGN We performed single-cell RNA-sequencing (scRNA-seq) on 27 260 cells from seven MPE samples and 91 186 cells from eight osteosarcoma tissues, including one recurrent, one lung metastasis and six primary tumour (PT) samples, to characterize their tumour microenvironment. RESULTS Thirteen main cell groups were identified in osteosarcoma tumour and MPE samples. Immune cells dominate the cellular contexts in MPE with more T/NK cells and less osteoclasts compared to PT samples. Of T/NK cells, CD8+ GNLY+ , CD8+ KLRC2+ T cells and FCGR3A+ NK cells were enriched in MPE but CD4+ FOXP3+ Tregs were enriched in PT samples. Naïve IGHD+ B and immune regulatory IGHA1+ B cells were largely identified in MPE, whereas bone metabolism-related CLEC11A+ B cells were significantly enriched in osteosarcoma PT. M2-type TAMs, including CLEC11A_TAM, C1QC_TAM and Prolif_TAMs, among myeloid cells were enriched in PT, which may suppress cytotoxicity activities of T cells through multiple ligand-receptor interactions. Mature LAMP3+ DCs were transformed from CD1C+ DC and CLEC9A+ DC sub-clusters when exposure to tumour alloantigens, which may improve T cell cytotoxicity activities on tumour cells under anti-PD-L1 treatments. In further, immune cells from MPE usually present up-regulated glycolysis and down-regulated oxidative phosphorylation and riboflavin metabolism activities compared to those in PT samples. CONCLUSIONS Our study provided a novel cellular atlas of MPE and PT in patients with advanced osteosarcoma, which may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhichang Zhang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina,Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China
| | - Weiping Ji
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jin Huang
- Pathology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yawen Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jianjun Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Dong
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ting Yuan
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qingcheng Yang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaomin Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lina Tang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Hongtao Li
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junyi Yin
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yonggang Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tong Ji
- Department of Orthopaedics, Shanghai Ninth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jia Fei
- Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Peizhan Chen
- Clinical Research Center, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Hu
- Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China,Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
4
|
Elblinger E, Bokor J, Bokor Á, Altbäcker V, Nagy J, Szabó J, Sárdi B, Bâlteanu A, Rónai Z, Rózsa L, Rátky J, Anton I, Zsolnai A. Parentage testing and looking for single nucleotide markers associated with antler quality in deer ( Cervus elaphus). Arch Anim Breed 2022; 65:267-274. [PMID: 36035877 PMCID: PMC9399935 DOI: 10.5194/aab-65-267-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
To provide a cost-efficient parentage testing kit for red deer (Cervus elaphus), a 63 SNP set has been developed from a high-density Illumina
BovineHD BeadChip containing 777 962 SNPs after filtering of genotypes of 50
stags. The successful genotyping rate was 38.6 % on the chip. The ratio
of polymorphic loci among effectively genotyped loci was 6.5 %. The
selected 63 SNPs have been applied to 960 animals to perform parentage
control. Thirty SNPs out of the 63 had worked on the OpenArray platform. Their
combined value of the probability of identity and exclusion probability was
4.9×10-11 and 0.99803, respectively. A search for loci linked with antler quality was also performed on the
genotypes of the above-mentioned stags. Association studies revealed 14 SNPs
associated with antler quality, where low-quality antlers with short and
thin main beam antlers had values from 1 to 2, while high-quality antlers
with long and strong main beams had values between 4 and 5. The chance for a
stag to be correctly identified as having high-value antlers is expected to
be over 88 %.
Collapse
Affiliation(s)
- Edith Elblinger
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Kaposvár, 7400, Hungary
| | - Julianna Bokor
- Game Management
Landscape Center, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Bőszénfa, 7475, Hungary
| | - Árpád Bokor
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Kaposvár, 7400, Hungary
| | - Vilmos Altbäcker
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Kaposvár, 7400, Hungary
| | - János Nagy
- Game Management
Landscape Center, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Bőszénfa, 7475, Hungary
| | - József Szabó
- Game Management
Landscape Center, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Bőszénfa, 7475, Hungary
| | - Bertalan Sárdi
- Game Management
Landscape Center, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Bőszénfa, 7475, Hungary
| | - Adrian Valentin Bâlteanu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine,
Cluj-Napoca, Romania
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Eötvös Loránd University, Budapest, 1053, Hungary
| | - László Rózsa
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Herceghalom, 2053, Hungary
| | - József Rátky
- Department of Obstetrics
and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - István Anton
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Herceghalom, 2053, Hungary
| | - Attila Zsolnai
- Kaposvár
Campus, Hungarian University of Agriculture and Life Sciences, Herceghalom, 2053, Hungary
- Institute for Farm Animal Gene Conservation, National Centre for
Biodiversity and Gene Conservation, Gödöllő, 2100, Hungary
| |
Collapse
|
5
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|