1
|
Zhao K, Dai P, Xiao P, Pan Y, Liao L, Liu J, Yang X, Li Z, Ma Y, Liu J, Zhang Z, Li S, Zhang H, Chen S, Cai F, Tan Z. Automated segmentation and source prediction of bone tumors using ConvNeXtv2 Fusion based Mask R-CNN to identify lung cancer metastasis. J Bone Oncol 2024; 48:100637. [PMID: 39430914 PMCID: PMC11488409 DOI: 10.1016/j.jbo.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer, which is a leading cause of cancer-related deaths worldwide, frequently metastasizes to the bones, significantly diminishing patients' quality of life and complicating treatment strategies. This study aims to develop an advanced 3D Mask R-CNN model, enhanced with the ConvNeXt-V2 backbone, for the automatic segmentation of bone tumors and identification of lung cancer metastasis to support personalized treatment planning. Data were collected from two hospitals: Center A (106 patients) and Center B (265 patients). The data from Center B were used for training, while Center A's dataset served as an independent external validation set. High-resolution CT scans with 1 mm slice thickness and no inter-slice gaps were utilized, and the regions of interest (ROIs) were manually segmented and validated by two experienced radiologists. The 3D Mask R-CNN model achieved a Dice Similarity Coefficient (DSC) of 0.856, a sensitivity of 0.921, and a specificity of 0.961 on the training set. On the test set, it achieved a DSC of 0.849, a sensitivity of 0.911, and a specificity of 0.931. For the classification task, the model attained an AUC of 0.865, an accuracy of 0.866, a sensitivity of 0.875, and a specificity of 0.835 on the training set, while achieving an AUC of 0.842, an accuracy of 0.836, a sensitivity of 0.847, and a specificity of 0.819 on the test set. These results highlight the model's potential in improving the accuracy of bone tumor segmentation and lung cancer metastasis detection, paving the way for enhanced diagnostic workflows and personalized treatment strategies in clinical oncology.
Collapse
Affiliation(s)
- Ketong Zhao
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
- Health Management Center, West China Lecheng Hospital of Sichuan University, Qionghai City 571400, Hainan Province, China
| | - Ping Dai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Ping Xiao
- Department of Otorhinolaryngology, Shenzhen Children’s Hospital, Shenzhen 518055, Guangdong Province, China
| | - Yuhang Pan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Litao Liao
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Junru Liu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Xuemei Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhenxing Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Yanjun Ma
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Jianxi Liu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhengbo Zhang
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi 214071, Jiangsu Province, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, Guangdong Province, China
| | - Hailong Zhang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Sheng Chen
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Feiyue Cai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
2
|
D'Oronzo S, Cives M, Lauricella E, Stucci S, Centonza A, Gentile M, Ostuni C, Porta C. Assessment of bone turnover markers and DXA parameters to predict bone metastasis progression during zoledronate treatment: a single-center experience. Clin Exp Med 2024; 24:7. [PMID: 38240866 PMCID: PMC10798926 DOI: 10.1007/s10238-023-01280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 01/22/2024]
Abstract
Bone metastases (BM) are a serious cancer complication, potentially causing substantial morbidity. Among the clinical issues related to BM, there is the lack of specific tools for early diagnosis and prognosis. We explored whether combining bone turnover markers (BTM) with dual-energy X-ray absorptiometry (DXA) assessment could identify early BM progression and risk of skeletal-related events (SREs) during zoledronate treatment. Before the initiation of zoledronate (T0) and after six months of treatment (T1), serum levels of five BTM were measured, and patients (N = 47) underwent DXA evaluation. Standard radiological imaging was performed to assess bone tumor response to medical anti-cancer treatment. High tumor burden in bone correlated with higher serum CTX (p = 0.007) and NTX (p = 0.005) at baseline. Low concentrations of OPG at T0 predicted BM progression with a sensitivity and specificity of 63% and 77%, respectively, when a cutoff of 5.2 pmol/l was used; such a predictive meaning was stronger in patients with lytic BM (sensitivity: 88%, specificity: 80%; p = 0.0006). As for the risk of SREs, we observed an association between low baseline OC (p = 0.04) and OPG (p = 0.08) and the onset of any-time SREs, whereas an increase in OPG over time was associated with reduced risk of on-study events (p = 0.03). Moreover, a statistically significant correlation emerged between low baseline lumbar T-score and femur BMD and on-study SREs (p < 0.001 in both instances). These findings suggest that addition of DXA to BTM dosage could help stratifying the risk of SREs at the time of BM diagnosis but does not enhance our capability of detecting bone progression, during zoledronate treatment.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy.
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy.
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy
| | - Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Stucci
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy
| | - Antonella Centonza
- Unit of Oncology, Fondazione IRCCS "Casa Sollievo Della Sofferenza", San Giovanni Rotondo, Italy
| | - Marica Gentile
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Carmela Ostuni
- Oncology Unit of National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital Castellana Grotte, Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Bari, Italy
| |
Collapse
|
3
|
Jiang T, Zeng Q, He J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl Cancer Res 2023; 12:2932-2945. [PMID: 37969388 PMCID: PMC10643954 DOI: 10.21037/tcr-23-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
Alkaline phosphatase (ALP) is a group of enzymes that catalyze hydrolysis of phosphate esters at an alkaline pH, resulting in the generation of inorganic phosphate. These enzymes are widely distributed, and their activity is found in various tissues including bone, liver, intestine, and placenta. However, abnormalities in ALP expression and activity have been observed in certain types of cancer. In some cases, elevated serum levels of ALP are observed in patients with liver and bone metastasis. In other cases, increased levels of ALP have been observed in patients with pancreatic and lung cancer. On the other hand, low expression of ALP has also been associated with poor prognosis in patients with certain types of tumors, including colorectal cancer (CRC), breast cancer, and non-small cell lung cancer (NSCLC). In these cases, low ALP activity may be associated with decreased differentiation of cancer cells and increased cancer cell proliferation. Overall, the role of ALP in cancer is complex and context-dependent. This article reviews application progress of ALP in cancer, and we hypothesize that ALP might be a potential tumor biomarker, combined detection of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), bone-specific alkaline phosphatase (BSAP), carbohydrate antigen 19-9 (CA 19-9), lactate dehydrogenase (LDH) and ALP isozymes levels can be used for more accurate diagnosis of a particular tumor. Further research is needed to better understand the mechanisms underlying ALP dysregulation in cancer and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Limam I, Abdelkarim M, El Ayeb M, Crepin M, Marrakchi N, Di Benedetto M. Disintegrin-like Protein Strategy to Inhibit Aggressive Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12219. [PMID: 37569595 PMCID: PMC10418936 DOI: 10.3390/ijms241512219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Venoms are a rich source of bioactive compounds, and among them is leberagin-C (Leb-C), a disintegrin-like protein derived from the venom of Macrovipera lebetina transmediterrannea snakes. Leb-C has shown promising inhibitory effects on platelet aggregation. Previous studies have demonstrated that this SECD protein specifically targets α5β1, αvβ3, and αvβ6 integrins through a mimic mechanism of RGD disintegrins. In our current study, we focused on exploring the potential effects of Leb-C on metastatic breast cancer. Our findings revealed that Leb-C disrupted the adhesion, migration, and invasion capabilities of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN sub-population. Additionally, we observed significant suppression of adhesion, migration, and invasion of human umbilical vein endothelial cells (HUVECs). Furthermore, Leb-C demonstrated a strong inhibitory effect on fibroblast-growth-factor-2-induced proliferation of HUVEC. We conducted in vivo experiments using nude mice and found that treatment with 2 µM of Leb-C resulted in a remarkable 73% reduction in D3H2LN xenograft tumor size. Additionally, quantification of intratumor microvessels revealed a 50% reduction in tumor angiogenesis in xenograft after 21 days of twice-weekly treatment with 2 µM of Leb-C. Collectively, these findings suggest the potential utility of this disintegrin-like protein for inhibiting aggressive and resistant metastatic breast cancer.
Collapse
Affiliation(s)
- Inès Limam
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mohamed Abdelkarim
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
- LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, 1 Rue Djebal Lakhdar, Tunis 1006, Tunisia
| | - Mohamed El Ayeb
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Michel Crepin
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mélanie Di Benedetto
- IUT of Saint-Denis, Department HSE, Université Paris 13, UMRS941 SMBH, 1 Rue de Chablis, 93000 Bobigny, France
| |
Collapse
|
5
|
Brook N, Dharmarajan A, Chan A, Dass CR. Potential therapeutic role for pigment epithelium-derived factor in post-menopausal breast cancer bone metastasis. J Pharm Pharmacol 2023:7146711. [PMID: 37116213 DOI: 10.1093/jpp/rgad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES This review discusses key oestrogens associated with the circulating pre- and post-menopausal milieu and how they may impact intratumoral oestrogen levels and breast cancer (BC) metastasis. It also identifies critical steps in BC metastasis to bone from the viewpoint of pigment epithelium-derived factor (PEDF) function, and discusses the role of several associated pro-metastatic biomarkers in BC bone metastasis. KEY FINDINGS PEDF is regulated by oestrogen in a number of oestrogen-sensitive tissues. Changes in circulating oestrogen levels associated with menopause may enhance the growth of BC bone metastases, leading to the establishment of a pre-metastatic niche. The establishment of such a pre-metastatic niche is driven by several key mediators, with pro-osteoclastic and pro-metastatic function which are upregulated by BC cells. These mediators appear to be regulated by oestrogen, as well as differentially affected by menopausal status. PEDF interacts with several pro-metastatic, pro-osteoclastic biomarkers, including C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor kappa B (NFκB) in BC bone metastasis. CONCLUSION Mediators such as CXCR4 and MT1-MMP underpin the ability of PEDF to function as an antimetastatic in other cancers such as osteosarcoma, highlighting the possibility that this serpin could be used as a therapeutic against BC metastasis in future.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
6
|
NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre- and Post-Menopausal Oestrogen Levels in Breast Cancer. Int J Mol Sci 2022; 23:ijms232415641. [PMID: 36555293 PMCID: PMC9779285 DOI: 10.3390/ijms232415641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models simulating pre- and post-menopausal bone microenvironments were used to evaluate if PEDF regulates pro-metastatic biomarker expression and downstream functional effects on BC cells. PEDF treatment reduced phosphorylated-nuclear factor-κB p65 subunit (p-NFκB-p65), tumour necrosis factor-α (TNFα), C-X-C chemokine receptor type-4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) in oestrogen receptor (ER)+/human epidermal growth factor receptor-2 (HER2)- BC cells under post-menopausal oestrogen conditions. In triple negative BC (TNBC) cells, PEDF treatment reduced pNFκB-p65 and uPAR expression under pre-menopausal oestrogen conditions. A potential reciprocal regulatory axis between p-NFκB-65 and PEDF in BC was identified, which was BC subtype-specific and differentially regulated by menopausal oestrogen conditions. The effects of PEDF treatment and NFκB inhibition on BC cell function under menopausal conditions were also compared. PEDF treatment exhibited superior anti-viability effects, while combined PEDF and NFκB-p65 inhibitor treatment was superior in reducing BC cell colony formation in a subtype-specific manner. Lastly, immunohistochemical evaluation of p-NFκB-p65 and PEDF expression in human BC and bone metastases specimens revealed an inverse correlation between nuclear PEDF and NFκB expression in bone metastases. We propose that menopausal status is associated with a PEDF/NFκB reciprocal regulatory axis, which drives PEDF expression and anti-metastatic function in a subtype-specific manner. Altogether, our findings identify pre-menopausal TNBC and post-menopausal ER+/HER2- BC patients as target populations for future PEDF research.
Collapse
|
7
|
Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer. Cell Death Dis 2022; 13:813. [PMID: 36138018 PMCID: PMC9499936 DOI: 10.1038/s41419-022-05215-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/23/2023]
Abstract
A common stage of advanced prostate cancer is castration-resistant prostate cancer (CRPC), greater understanding of which is required in order to address and solve the clinically difficult challenge. Cathepsin K (CTSK) is a cysteine protease that usually has a strong activity of degrading extracellular matrix and is related to osteoclast-mediated bone destruction. However, the mechanism of CTSK-regulation in CRPC is still unclear to us. The current study aimed to analyze the expression of differentially expressed genes (DEGs) in patient samples (from localized PC and CRPC). Interestingly, we found that CTSK to be significantly up-regulated in CRPC. Through further signal pathway enrichment analysis, we found that the IL-17 signaling pathway to be highly correlated with CTSK. The oncogenic functions of CTSK and IL-17 in CRPC were proven by a series of in vivo and in vitro experiments. Possible downstream molecules of CTSK were investigated, which could serve as control elements to regulate the expression of EMT, thereby facilitating the metastasis and excessive proliferation of PC cells. Expression of CTSK was related to high concentration of M2 tumor-associated macrophages (TAMs) M2 in CRPC. A CTSK-mediated feedback circuit between TAMs and CRPC tissues was indicated in the process of transfer, proving the possibility of CTSK could be use as an available therapeutic target for CRPC.
Collapse
|