1
|
Jia W, Xu B, Yu L, Feng Y, Wang J, Xu C, Liang L, Zhou Y, Ding W, Kong L. BAIAP2L2 promotes the malignancy of hepatocellular carcinoma via GABPB1-mediated reactive oxygen species imbalance. Cancer Gene Ther 2024:10.1038/s41417-024-00841-0. [PMID: 39496939 DOI: 10.1038/s41417-024-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer worldwide and ranks as the fourth leading cause of cancer-related deaths. This research investigation identified an upregulation of BAI1-associated protein 2-like 2 (BAIAP2L2) in HCC tissues, which was found to be an independent prognostic factor for overall survival in HCC patients. BAIAP2L2 was observed to enhance cell proliferation, metastasis, stemness, cell cycle progression, and inhibit apoptosis in HCC. Mechanistically, NFκB1 was found to stimulate BAIAP2L2 transcription by directly binding to its promoter region. BAIAP2L2 interacts with GABPB1 to inhibit its ubiquitin-mediated degradation and promote its nuclear translocation. BAIAP2L2 inhibits the levels of reactive oxygen species (ROS) by regulating GABPB1, thereby promoting cancer properties in HCC and reducing the sensitivity of HCC to lenvatinib. In summary, this study elucidates the role and underlying mechanism of BAIAP2L2 in HCC, providing a potential biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Bin Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Liang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yanzhi Feng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Litao Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Yongping Zhou
- Department of Hepatobiliary, Jiangnan University Medical Center, JUMC, Wuxi, Jiangsu Province, China.
| | - Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu Y, Jiang B, Li Y, Zhang X, Wang L, Yao Y, Zhu B, Shi H, Chai X, Hu X, Zhang B, Li H. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine (Baltimore) 2024; 103:e36467. [PMID: 38241548 PMCID: PMC10798715 DOI: 10.1097/md.0000000000036467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/14/2023] [Indexed: 01/21/2024] Open
Abstract
Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/β-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-β (TGF-β)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.
Collapse
Affiliation(s)
- Yuezhen Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanqiang Li
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoshou Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lijun Wang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yasai Yao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Baohong Zhu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hengwei Shi
- The Second Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiping Chai
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xingrong Hu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bangneng Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Hongzhuan Li
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Cai X, Lv Y, Pan J, Cao Z, Zhang J, Li Y, Zheng H. CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway. Curr Protein Pept Sci 2024; 25:386-393. [PMID: 38265409 DOI: 10.2174/0113892037273375231204080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression. METHODS Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot. RESULTS Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8. CONCLUSION Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.
Collapse
Affiliation(s)
- Xiaoping Cai
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuankai Lv
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Jiongwei Pan
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Zhuo Cao
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Junzhi Zhang
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuling Li
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Hao Zheng
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| |
Collapse
|
4
|
Ye J, Huang P, Ma K, Zhao Z, Hua T, Zai W, Chen J, Fu X. Genome-Wide Extrachromosomal Circular DNA Profiling of Paired Hepatocellular Carcinoma and Adjacent Liver Tissues. Cancers (Basel) 2023; 15:5309. [PMID: 38001569 PMCID: PMC10670553 DOI: 10.3390/cancers15225309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops through multiple mechanisms. While recent studies have shown the presence of extrachromosomal circular DNA (eccDNA) in most cancer types, the eccDNA expression pattern and its association with HCC remain obscure. We aimed to investigate this problem. The genome-wide eccDNA profiles of eight paired HCC and adjacent non-tumor tissue samples were comprehensively elucidated based on Circle-seq, and they were further cross-analyzed with the RNA sequencing data to determine the association between eccDNA expression and transcriptome dysregulation. A total of 60,423 unique eccDNA types were identified. Most of the detected eccDNAs were smaller than 1 kb, with a length up to 182,363 bp and a mean sizes of 674 bp (non-tumor) and 813 bp (tumor), showing a greater association with gene-rich rather than with gene-poor regions. Although there was no statistical difference in length and chromosome distribution, the eccDNA patterns between HCC and adjacent non-tumor tissues showed significant differences at both the chromosomal and single gene levels. Five of the eight HCC tissues showed significantly higher amounts of chromosome 22-derived eccDNA expression compared to the non-tumor tissue. Furthermore, two genes, SLC16A3 and BAIAP2L2, with a higher transcription level in tumor tissues, were related to eccDNAs exclusively detected in three HCC samples and were negatively associated with survival rates in HCC cohorts from public databases. These results indicate the existence and massive heterogeneity of eccDNAs in HCC and adjacent liver tissues, and suggest their potential association with dysregulated gene expression.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Peixin Huang
- Liver Cancer Institute, Fudan University, Shanghai 200032, China;
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kewei Ma
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Zixin Zhao
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Xiutao Fu
- Liver Cancer Institute, Fudan University, Shanghai 200032, China;
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Shanghai 200032, China
| |
Collapse
|
5
|
Caudatin Inhibits the Proliferation, Invasion, and Glycolysis of Osteosarcoma Cells via the Wnt/ β- Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4026688. [PMID: 36588592 PMCID: PMC9803569 DOI: 10.1155/2022/4026688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/25/2022]
Abstract
Background Caudatin is a steroidal glycoside with reported anticancer activity in a variety of studies. Nevertheless, the role and mechanisms of caudatin in osteosarcoma (OS) remain unclear. In this study, we explored the potential anticancer effects of caudatin in OS cells and investigated the underlying mechanisms. Methods Both the CCK8 proliferation assay and flow cytometry were employed to evaluate cell proliferation and apoptosis. A transwell assay was applied to determine cell invasion ability. Besides, glycolytic capacity was examined by measuring glucose consumption, lactic acid production, as well as ATP production. A western blot was utilized to assess the protein levels of β-catenin, CyclinD 1, C-myc, HK2 (Hexokinase 2), LDHA (lactate dehydrogenase), as well as epithelial-mesenchymal transition (EMT)-related markers. The inhibitory effect of caudatin on tumor growth was investigated using a xenograft tumorigenesis model. Results Caudatin restrained cellular glycolysis, suppressed cell proliferation and invasion by reducing HK2 and LDHA expression and regulating the Wnt/β-Catenin signaling pathway. Caudatin treatment caused the upregulation of E-cadherin and suppressed N-cadherin expression. Further, caudatin treatment impaired cell viability, invasion ability, and intracellular glycolysis level but induced apoptosis. The administration of BML 284 reversed the inhibitory effects of caudatin. Moreover, caudatin suppressed the tumorigenesis of OS cells in the xenograft model of nude mice. Conclusions Our study revealed the anticancer effects of caudatin, including proliferation inhibition, cell invasion suppression, and glycolysis impairment. These effects seem to be executed through targeting the Wnt/β-Catenin signaling pathway. These data indicate that caudatin may be formulated as a potential therapeutic for osteosarcoma.
Collapse
|
6
|
Han X, Long W, Liu Y, Xu J. Prognostic value and immunological role of BAIAP2L2 in liver hepatocellular carcinoma: A pan-cancer analysis. Front Surg 2022; 9:985034. [PMID: 36338652 PMCID: PMC9634486 DOI: 10.3389/fsurg.2022.985034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In recent years, the role of BAI1-associated protein 2-like 2 (BAIAP2L2) in the prognosis and immune microenvironment of various cancers has attracted increasing attention. However, its clinical value and immune infiltration in liver hepatocellular carcinoma (LIHC) remain unclear. OBJECTIVE To investigate the prognostic value of BAIAP2L2 and its correlation with immune infiltration in LIHC, we conducted corresponding data mining. METHODS In this study, The Cancer Genome Atlas, GTEx, StarBase, UALCAN, TIMER, GEPIA, Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, STRING and BioGPS databases were used to analyze BAIAP2L2 in cancers. Logistic regression and Cox regression were performed to analyze the correlation between clinical features and BAIAP2L2 expression in LIHC. In addition, the diagnostic and prognostic values of BAIAP2L2 in LIHC were determined by receiver operating characteristic (ROC) curves and nomograms. Single-sample gene set enrichment analysis (ssGSEA), BioGPS and TIMER were used to analyze the correlation between BAIAP2L2 and immune infiltration. More importantly, quantitative real-time polymerase chain reaction was used to verify BAIAP2L2 expression in a liver cancer cell line and a normal cell line. Visualization of data was mostly achieved using R language, version 3.6.3. RESULTS High BAIAP2L2 levels indicated poor overall survival (OS) and disease-free survival (DFS) of patients with LIHC. Abnormally increased expression of BAIAP2L2 in LIHC may be the result of both genetic alterations and lower DNA methylation levels. Furthermore, Cox regression analysis showed that high BAIAP2L2 expression was an independent risk factor for OS and DFS in patients with liver cancer. ROC curves and nomograms also confirmed the diagnostic and prognostic values of BAIAP2L2 in LIHC. Additionally, a PPI network of BAIAP2L2 was established and results implyed that BAIAP2L2 interacts with MTSS1, AMPH, FCHO1, SYT9, PDK2, MTSS1L, PM20D1, CHST4 and PALM3. ssGSEA showed that BAIAP2L2 was associated with T cells and natural killer cells. Simultaneously, the TIMER database showed that the expression of BAIAP2L2 in LIHC was positively correlated with tumor infiltrating cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells. CONCLUSIONS Through pan-cancer analysis, prognostic and immunological value of BAIAP2L2 in LIHC was identified. This is the first report on the potential of BAIAP2L2 as a prognostic biomarker and its correlation with immune infiltration in LIHC.
Collapse
Affiliation(s)
- Xiudan Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Wei Long
- Department of Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China,Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China,Correspondence: Jixiong Xu
| |
Collapse
|
7
|
Xue C, Gu X, Zhao Y, Jia J, Zheng Q, Su Y, Bao Z, Lu J, Li L. Prediction of hepatocellular carcinoma prognosis and immunotherapeutic effects based on tryptophan metabolism-related genes. Cancer Cell Int 2022; 22:308. [PMID: 36217206 PMCID: PMC9552452 DOI: 10.1186/s12935-022-02730-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background L-tryptophan (Trp) metabolism involved in mediating tumour development and immune suppression. However, comprehensive analysis of the role of the Trp metabolism pathway is still a challenge. Methods We downloaded Trp metabolism-related genes’ expression data from different public databases, including TCGA, Gene Expression Omnibus (GEO) and Hepatocellular Carcinoma Database (HCCDB). And we identified two metabolic phenotypes using the ConsensusClusterPlus package. Univariate regression analysis and lasso Cox regression analysis were used to establish a risk model. CIBERSORT and Tracking of Indels by DEcomposition (TIDE) analyses were adopted to assess the infiltration abundance of immune cells and tumour immune escape. Results We identified two metabolic phenotypes, and patients in Cluster 2 (C2) had a better prognosis than those in Cluster 1 (C1). The distribution of clinical features between the metabolic phenotypes showed that patients in C1 tended to have higher T stage, stage, grade, and death probability than those of patients in C2. Additionally, we screened 739 differentially expressed genes (DEGs) between the C1 and C2. We generated a ten-gene risk model based on the DEGs, and the area under the curve (AUC) values of the risk model for predicting overall survival. Patients in the low-risk subgroup tended to have a significantly longer overall survival than that of those in the high-risk group. Moreover, univariate analysis indicated that the risk model was significantly correlated with overall survival. Multivariate analysis showed that the risk model remained an independent risk factor in hepatocellular carcinoma (p < 0.0001). Conclusions We identified two metabolic phenotypes based on genes of the Trp metabolism pathway, and we established a risk model that could be used for predicting prognosis and guiding immunotherapy in patients with hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02730-8.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|