1
|
Zhao J, Sha B, Zeng L, Dou Y, Huang H, Liang G, Pan J, Hong K, Zhou G, Yang W, Liu J. J-shaped association of serum uric acid concentrations with all-cause mortality in individuals with osteoarthritis: A prospective cohort study. Joint Bone Spine 2024; 91:105679. [PMID: 38143017 DOI: 10.1016/j.jbspin.2023.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the relationship between serum uric acid (SUA) concentrations and all-cause mortality in individuals with osteoarthritis (OA). METHODS All participant data were retrieved from the National Health and Nutrition Examination Survey database. A total of 4671 participants (age range: 20 to 85 years old), including 2988 females and 1683 males, were included in this study. The determination of death outcome was based on the National Death Index (up to December 31, 2019). We explored the nonlinear relationship between SUA concentrations and all-cause mortality in OA patients by establishing a Cox proportional risk model and a two-segment Cox proportional risk model and ran an interaction test to identify the high-risk population for all-cause mortality. RESULTS During 30,645 person-years of follow-up, the number of all-cause deaths for females and males was 736 and 516, respectively. After multivariate adjustment, we found a nonlinear relationship between SUA concentrations and all-cause mortality in both females and males with OA. In addition, we found a J-shaped relationship between SUA concentrations and all-cause mortality. The SUA concentration thresholds for all-cause mortality of females and males were stable at 5.6mg/dl and 6.2mg/dl, respectively. Compared with SUA concentrations below the inflection point, the all-cause mortality risk at higher SUA concentrations in females and males with OA increased by 20% (hazard ratio [HR]: 1.2, 95% confidence interval [CI]: 1.1 to 1.2) and 25% (HR: 1.2, 95% CI: 1.12 to 1.39), respectively. CONCLUSIONS There is a nonlinear relationship between SUA concentrations and all-cause mortality in the American OA population (J-shaped association). The all-cause mortality thresholds for SUA concentrations in females and males are 5.6mg/dl and 6.2mg/dl, respectively.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, 510120 Guangzhou, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China
| | - Lingfeng Zeng
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, 510120 Guangzhou, China
| | - Yaoxing Dou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, 510120 Guangzhou, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China
| | - Guihong Liang
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, 510120 Guangzhou, China
| | - Jianke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), 510095 Guangzhou, China
| | - Guanghui Zhou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510120 Guangzhou, China.
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, 510120 Guangzhou, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China; Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), 510095 Guangzhou, China.
| |
Collapse
|
2
|
Li Y, Merriman TR, Chen H, Lv Q, Yan Y, Xu X, Ji A, Cheng Z, Wang X, Lu D, Han L, Cui L, Wang C, Sun W, Li C, Lu J. Clinical characteristics of adolescent-onset gout in Chinese: A hospital-based cross-sectional study. Semin Arthritis Rheum 2024; 65:152405. [PMID: 38335695 DOI: 10.1016/j.semarthrit.2024.152405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Adolescent-onset gout has a greater impact on the lives and health of patients than adult-onset gout. However, there is a relative lack of clinical information on adolescent-onset gout. Hence, we analyzed a Chinese cohort. METHODS We studied clinical features of 9,003 Chinese patients. Gout onset age of 12 - 19 years is defined as adolescent-onset group (AG), 20 - 40 years as early-onset group (EG), and 41 - 64 years as late-onset group (LG). Multivariable regression analysis evaluated factors associated with recurrent flares, serum urate (SU) levels, and underexcretion type in AG. RESULTS Compared with EG and LG, the AG had higher SU levels [AG: 9.5 (2.2) mg/dL, EG: 8.6 (2.1) mg/dL, LG: 7.73 (2.0) mg/dL, P < 0.001], higher percentage of positive family history of gout (AG: 41.8 %, EG: 29.6 %, LG: 24.6 %, P < 0.001), underexcretion type (AG: 62.4 %, EG: 62.5 %, LG: 58.8 %, P = 0.04), recurrent flares (AG: 78.1 %, EG: 70.3 %, LG: 68.9 %, P = 0.01). Urate-lowering therapy (ULT) initiated [OR 6.58 (95 % CI 1.35 - 32.00)] and hypercholesterolemia [OR 4.16 (95 % CI 1.28 - 13.53)] were associated with recurrent flares. eGFR was identified to be a significant variable of increasing SU levels [beta -0.24 (95 % CI -0.04 to -0.01)]. Hypertriglyceridemia [OR 0.35 (95 % CI 0.17 - 0.71)] was related to underexcretion type. CONCLUSION Adolescent-onset gout patients had clinically distinctive features with higher SU levels, BMI, positive gout family history, underexcretion type and recurrent flares. These specific populations were less likely to achieve ULT target, requiring more clinical attention.
Collapse
Affiliation(s)
- Yushuang Li
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Institute of Metabolic Diseases, Qingdao University, 266003 Qingdao, PR China
| | - Tony R Merriman
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Institute of Metabolic Diseases, Qingdao University, 266003 Qingdao, PR China; Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, 200072 Shanghai, PR China
| | - Qingguo Lv
- Department of Endocrinology and Metabolism, Center for diabetes and metabolism research, West China Hospital of Sichuan University, 610041 Chengdu, PR China
| | - Yinkun Yan
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, PR China
| | - Xinmiao Xu
- Department of Endocrinology and Metabolism, Yantai Yeda Hospital, 265599 Yantai, PR China
| | - Aichang Ji
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Zan Cheng
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Xiaxia Wang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Di Lu
- Department of the Third Chest, Qingdao Chest Hospital, 266043 Qingdao, PR China
| | - Lin Han
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Lingling Cui
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Can Wang
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Wenyan Sun
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China
| | - Changgui Li
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Institute of Metabolic Diseases, Qingdao University, 266003 Qingdao, PR China
| | - Jie Lu
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, 266003 Qingdao, PR China; Institute of Metabolic Diseases, Qingdao University, 266003 Qingdao, PR China.
| |
Collapse
|