1
|
Ipadeola AK, Salah B, Ghanem A, Ahmadaliev D, Sharaf MA, Abdullah AM, Eid K. Unveiling the effect of shapes and electrolytes on the electrocatalytic ethanol oxidation activity of self-standing Pd nanostructures. Heliyon 2023; 9:e16890. [PMID: 37484255 PMCID: PMC10360946 DOI: 10.1016/j.heliyon.2023.e16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Morphologically controlled Pd-based nanocrystals are the most efficient strategies for improving the electrocatalytic ethanol oxidation reaction (EOR) performance; however, their morphological-EOR activity relationship and effect of electrolytes at a wide pH range are still ambiguous. Here, we have synthesized porous self-standing Pd clustered nanospheres (Pd-CNSs) and Pd nanocubes (Pd-NCBs) for the EOR in acidic (H2SO4), alkaline (KOH), and neutral (NaHCO3) electrolytes compared to commercial spherical-like Pd/C catalysts. The fabrication process comprises the ice-cooling reduction of Pd precursor by sodium borohydride (NaBH4) and l-ascorbic acid to form Pd-CNSs and Pd-NCBs, respectively. The EOR activity of Pd-CNSs significantly outperformed those of Pd-NCBs, and Pd/C in all electrolytes, but the EOR activity was better in KOH than in H2SO4 and NaHCO3. This is due to the 3D porous clustered nanospherical morphology that makes Pd active centers more accessible and maximizes their utilization during EOR. The EOR specific/mass activities of Pd-CNSs reached (8.51 mA/cm2/2.39 A/mgPd) in KOH, (2.98 mA/cm2/0.88 A/mgPd) in H2SO4, and (0.061 mA/cm2/0.0083 A/mgPd) in NaHCO3, in addition to stability after 1000 cycles. This study affirms that porous 3D spherical Pd nanostructures are preferred for the EOR than those of 0D spherical-like and multi-dimensional cube-like nanostructures.
Collapse
Affiliation(s)
- Adewale K. Ipadeola
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Alaa Ghanem
- PVT-Lab, Production Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Doniyorbek Ahmadaliev
- Department of Chemical & Material Science Engineering of School of Engineering, New Uzbekistan University, Tashkent, 100007, Uzbekistan
| | - Mohammed A. Sharaf
- Department of Maritime Transportation Management Engineering, Istanbul University-Cerrahpasa, 34320, Avcilar/Istanbul, Turkey
- Mericler Inc. Educational Consulting, Esentepe, Yazarlar Sk. No 21, 34381, Sisli/Istanbul, Turkey
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
2
|
Yang H, Chen Y, Qin Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63440-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Jang MH, Kizilkaya O, Kropf AJ, Kurtz RL, Elam JW, Lei Y. Synergetic effect on catalytic activity and charge transfer in Pt-Pd bimetallic model catalysts prepared by atomic layer deposition. J Chem Phys 2020; 152:024710. [PMID: 31941318 DOI: 10.1063/1.5128740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pt-Pd bimetallic nanoparticles were synthesized on TiO2 support on the planar substrate as well as on high surface area SiO2 gel by atomic layer deposition to identify the catalytic performance improvement after the formation of Pt-Pd bimetallic nanoparticles by surface analysis techniques. From X-ray absorption near edge spectra of Pt-Pd bimetallic nanoparticles, d-orbital hybridization between Pt 5d and Pd 4d was observed, which is responsible for charge transfer from Pt to Pd. Moreover, it was found from the in situ grazing incidence X-ray absorption spectroscopy study that Pt-Pd nanoparticles have a Pd shell/Pt core structure with CO adsorption. Resonant photoemission spectroscopy on Pt-Pd bimetallic nanoparticles showed that Pd resonant intensity is enhanced compared to that of Pd monometallic nanoparticles because of d-orbital hybridization and electronic states broadening of Pt and Pd compared monometallic catalysts, which results in catalytic performance improvement.
Collapse
Affiliation(s)
- Moon-Hyung Jang
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Orhan Kizilkaya
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, USA
| | - A Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Richard L Kurtz
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, USA
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yu Lei
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| |
Collapse
|
5
|
Xu H, Song P, Wang J, Gao F, Zhang Y, Shiraishi Y, Du Y. High-Quality Platinum-Iron Nanodendrites with a Multibranched Architecture as Efficient Electrocatalysts for the Ethanol Oxidation Reaction. ChemCatChem 2018. [DOI: 10.1002/cctc.201800109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| |
Collapse
|
6
|
Rontu V, Selent A, Zhivonitko VV, Scotti G, Koptyug IV, Telkki VV, Franssila S. Efficient Catalytic Microreactors with Atomic-Layer-Deposited Platinum Nanoparticles on Oxide Support. Chemistry 2017; 23:16835-16842. [DOI: 10.1002/chem.201703391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ville Rontu
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| | - Anne Selent
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
| | - Vladimir V. Zhivonitko
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center SB RAS; 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova St. 2 Novosibirsk 630090 Russia
| | - Gianmario Scotti
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center SB RAS; 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova St. 2 Novosibirsk 630090 Russia
| | - Ville-Veikko Telkki
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| |
Collapse
|
7
|
Kanninen P, Borghei M, Hakanpää J, Kauppinen EI, Ruiz V, Kallio T. Temperature dependent performance and catalyst layer properties of PtRu supported on modified few-walled carbon nanotubes for the alkaline direct ethanol fuel cell. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cells. J Catal 2015. [DOI: 10.1016/j.jcat.2015.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Figueiredo MC, Arán-Ais RM, Climent V, Kallio T, Feliu JM. Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. ChemElectroChem 2015. [DOI: 10.1002/celc.201500151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|