• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640428)   Today's Articles (1841)   Subscriber (50387)
For: Medford AJ, Sehested J, Rossmeisl J, Chorkendorff I, Studt F, Nørskov JK, Moses PG. Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). J Catal 2014. [DOI: 10.1016/j.jcat.2013.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Zhang X, Yang B. First-principles-based microkinetic modeling of methanol steam reforming over Cu(111) and Cu(211): structure sensitive activity and selectivity. Dalton Trans 2024;53:17190-17199. [PMID: 39373753 DOI: 10.1039/d4dt01808g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
2
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al2O3-Based Catalysts. Chem Rev 2024;124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
3
Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ. A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Phys Chem Chem Phys 2022;24:9360-9373. [PMID: 35383806 DOI: 10.1039/d2cp01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Electrochemical syngas production from CO2 and water with CNT supported ZnO catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
5
Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. Chem 2021. [DOI: 10.1016/j.chempr.2020.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
6
Wang Z, Hu P. Rational catalyst design for CO oxidation: a gradient-based optimization strategy. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02053b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
7
Alharthi AI, Din IU, Alotaibi MA. Effect of the Cu/Ni Ratio on the Activity of Zeolite Based Cu–Ni Bimetallic Catalysts for CO2 Hydrogenation to Methanol. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420120043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
8
Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME. Catalysts 2020. [DOI: 10.3390/catal10060655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
9
Bowker M. Methanol Synthesis from CO2 Hydrogenation. ChemCatChem 2019;11:4238-4246. [PMID: 31894186 PMCID: PMC6919338 DOI: 10.1002/cctc.201900401] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Indexed: 11/06/2022]
10
Jo DY, Lee MW, Ham HC, Lee KY. Role of the Zn atomic arrangements in enhancing the activity and stability of the kinked Cu(2 1 1) site in CH3OH production by CO2 hydrogenation and dissociation: First-principles microkinetic modeling study. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
11
Kelly SR, Shi X, Back S, Vallez L, Park SY, Siahrostami S, Zheng X, Nørskov JK. ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04873] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Guharoy U, Ramirez Reina T, Olsson E, Gu S, Cai Q. Theoretical Insights of Ni2P (0001) Surface toward Its Potential Applicability in CO2 Conversion via Dry Reforming of Methane. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Nie X, Li W, Jiang X, Guo X, Song C. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
14
Bai H, Ma M, Bai B, Cao H, Zhang L, Gao Z, Vinokurov VA, Huang W. Carbon chain growth by formyl coupling over the Cu/γ-AlOOH(001) surface in syngas conversion. Phys Chem Chem Phys 2019;21:148-159. [DOI: 10.1039/c8cp06582a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Chen D, Zhang X, Tang J, Cui H, Pi S, Cui Z. Adsorption of SF6 Decomposed Products over ZnO(101̅0): Effects of O and Zn Vacancies. ACS OMEGA 2018;3:18739-18752. [PMID: 31458439 PMCID: PMC6643918 DOI: 10.1021/acsomega.8b02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 05/08/2023]
16
Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study. Catalysts 2018. [DOI: 10.3390/catal9010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
17
Jiang X, Wang X, Nie X, Koizumi N, Guo X, Song C. CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
18
Insight into the formation mechanism of C C chain in ethanol synthesis at the interface of partially hydroxylated γ-Al2O3 (110D) surface and polyethylene glycol solvent. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
19
Tan Q, Shi Z, Wu D. CO2 Hydrogenation to Methanol over a Highly Active Cu–Ni/CeO2–Nanotube Catalyst. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01246] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
Motagamwala AH, Ball MR, Dumesic JA. Microkinetic Analysis and Scaling Relations for Catalyst Design. Annu Rev Chem Biomol Eng 2018;9:413-450. [DOI: 10.1146/annurev-chembioeng-060817-084103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Bai B, Bai H, Cao HJ, Gao ZH, Zuo ZJ, Huang W. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al2O3(110D) surface in slurry bed. Phys Chem Chem Phys 2018;20:12845-12857. [PMID: 29700517 DOI: 10.1039/c8cp02000k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
22
Reichenbach T, Mondal K, Jäger M, Vent-Schmidt T, Himmel D, Dybbert V, Bruix A, Krossing I, Walter M, Moseler M. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
23
Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211). Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0403-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
24
Effect of Zr addition on catalytic performance of Cu-Zn-Al oxides for CO2 hydrogenation to methanol. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
25
Aljama H, Yoo JS, Nørskov JK, Abild-Pedersen F, Studt F. Methanol Partial Oxidation on Ag(1 1 1) from First Principles. ChemCatChem 2016. [DOI: 10.1002/cctc.201601053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
26
Ajamein H, Haghighi M, Shokrani R, Abdollahifar M. On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
27
Polo-Garzon F, Scott JK, Bruce DA. Microkinetic model for the dry reforming of methane on Rh doped pyrochlore catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
28
Zhou Y, Li Y, Shen W. Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis. Chem Asian J 2016;11:1470-88. [DOI: 10.1002/asia.201600115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
29
Yang N, Medford AJ, Liu X, Studt F, Bligaard T, Bent SF, Nørskov JK. Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C2+ Oxygenate Production. J Am Chem Soc 2016;138:3705-14. [PMID: 26958997 DOI: 10.1021/jacs.5b12087] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Wang Z, Hu P. Towards rational catalyst design: a general optimization framework. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016;374:rsta.2015.0078. [PMID: 26755754 DOI: 10.1098/rsta.2015.0078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
31
Brogaard RY, Olsbye U. Ethene Oligomerization in Ni-Containing Zeolites: Theoretical Discrimination of Reaction Mechanisms. ACS Catal 2016. [DOI: 10.1021/acscatal.5b01957] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
32
Cheng Z, Lo CS. Mechanistic and microkinetic analysis of CO2 hydrogenation on ceria. Phys Chem Chem Phys 2016;18:7987-96. [DOI: 10.1039/c5cp07469j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Degree of rate control approach to computational catalyst screening. J Catal 2015. [DOI: 10.1016/j.jcat.2015.07.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
34
An industrial perspective on the impact of Haldor Topsøe on computational chemistry. J Catal 2015. [DOI: 10.1016/j.jcat.2014.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
35
Some Attempts in the Rational Design of Heterogeneous Catalysts Using Density Functional Theory Calculations. Top Catal 2015. [DOI: 10.1007/s11244-015-0406-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
36
Tang QL, Zou WT, Huang RK, Wang Q, Duan XX. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations. Phys Chem Chem Phys 2015;17:7317-33. [DOI: 10.1039/c4cp05518g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
37
Brogaard RY, Wang CM, Studt F. Methanol–Alkene Reactions in Zeotype Acid Catalysts: Insights from a Descriptor-Based Approach and Microkinetic Modeling. ACS Catal 2014. [DOI: 10.1021/cs5014267] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
38
On the Kinetic Interpretation of DFT-Derived Energy Profiles: Cu-Catalyzed Methanol Synthesis. Catal Letters 2014. [DOI: 10.1007/s10562-014-1407-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
39
Frenzel J, Marx D. Methanol synthesis on ZnO(0001¯). IV. Reaction mechanisms and electronic structure. J Chem Phys 2014;141:124710. [DOI: 10.1063/1.4896053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
40
Wang CM, Brogaard RY, Weckhuysen BM, Nørskov JK, Studt F. Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes. J Phys Chem Lett 2014;5:1516-1521. [PMID: 26270089 DOI: 10.1021/jz500482z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
41
Martínez-Suárez L, Frenzel J, Marx D. Cu/ZnO nanocatalysts in response to environmental conditions: surface morphology, electronic structure, redox state and CO2 activation. Phys Chem Chem Phys 2014;16:26119-36. [DOI: 10.1039/c4cp02812k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA