1
|
Wang J, Guoa J, Liua YY, Lia P, Fanga Q, Li XC, Song W. B-N Co-Doped Graphene: Stability and Catalytic Activity in Oxygen Reduction Reaction - A Theoretical Insight. Chemphyschem 2024; 25:e202400414. [PMID: 38896533 DOI: 10.1002/cphc.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
We systematically investigated the stable configurations and catalytic activity in the Oxygen Reduction Reaction (ORR) of graphene co-doped with boron and nitrogen (B-N) using first-principles methods. Compared to single B/N doping, co-doping with BN is energetically favored. We found that intermediate species of ORR process adsorb on boron atoms, which act as catalytic sites. The presence of neighboring nitrogen atoms around boron plays a crucial role in modulating the catalytic activity of boron. For the same adsorption configuration, the adsorption energy of the adsorbate increases with the number of neighboring nitrogen atoms around boron and generally correlates positively with the number of electrons gained by the adsorbate. Regarding the catalytic activity of ORR, excessively strong adsorption of adsorbates impedes their hydrogenation. The best substrates for ORR catalytic activity are B-N-graphene and N-B2-graphene, with the rate-determining step being the hydrogenation of *OO and overpotentials of 0.49 V and 0.54 V, respectively.
Collapse
Affiliation(s)
- Jinlong Wang
- School of Electronic Engineering, Tongling University, Tongling, P. R. China
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei, P. R. China
| | - Jinmin Guoa
- School of Electronic Engineering, Tongling University, Tongling, P. R. China
| | - Yang-Yi Liua
- School of Electronic Engineering, Tongling University, Tongling, P. R. China
| | - Peng Lia
- School of Electronic Engineering, Tongling University, Tongling, P. R. China
| | - Qiufeng Fanga
- School of Electronic Engineering, Tongling University, Tongling, P. R. China
| | - Xiao-Chun Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei, P. R. China
| | - Wei Song
- School of Science, Henan Institute of Technology, Xinxiang, 453003, Henan, P. R. China
| |
Collapse
|
2
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
3
|
Che Z, Yuan Y, Qin J, Li P, Chen Y, Wu Y, Ding M, Zhang F, Cui M, Guo Y, Wang S. Progress of Nonmetallic Electrocatalysts for Oxygen Reduction Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1945. [PMID: 37446461 DOI: 10.3390/nano13131945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
As a key role in hindering the large-scale application of fuel cells, oxygen reduction reaction has always been a hot issue and nodus. Aiming to explore state-of-art electrocatalysts, this paper reviews the latest development of nonmetallic catalysts in oxygen reduction reactions, including single atoms doped with carbon materials such as N, B, P or S and multi-doped carbon materials. Afterward, the remaining challenges and research directions of carbon-based nonmetallic catalysts are prospected.
Collapse
Affiliation(s)
- Zhongmei Che
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yanan Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Jianxin Qin
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Peixuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yulei Chen
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Yue Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Meng Ding
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Min Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Shuai Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
4
|
Bhoyate SD, Kim J, de Souza FM, Lin J, Lee E, Kumar A, Gupta RK. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and pyrrolic-N doped graphene quantum dots. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Zhao X, Levell ZH, Yu S, Liu Y. Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chem Rev 2022; 122:10675-10709. [PMID: 35561417 DOI: 10.1021/acs.chemrev.1c00981] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional electrocatalysts have attracted great interest in recent years for renewable energy applications. However, the atomistic mechanisms are still under debate. Here we review the first-principles studies of the atomistic mechanisms of common 2D electrocatalysts. We first introduce the first-principles models for studying heterogeneous electrocatalysis then discuss the common 2D electrocatalysts with a focus on N doped graphene, single metal atoms in graphene, and transition metal dichalcogenides. The reactions include hydrogen evolution, oxygen evolution, oxygen reduction, and carbon dioxide reduction. Finally, we discuss the challenges and the future directions to improve the fundamental understanding of the 2D electrocatalyst at atomic level.
Collapse
Affiliation(s)
- Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary H Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
A DFT study of the oxygen reduction reaction mechanism on be doped graphene. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Priyadarsini A, Mallik BS. Site dependent catalytic water dissociation on an anisotropic buckled black phosphorus surface. Phys Chem Chem Phys 2022; 24:2582-2591. [PMID: 35029266 DOI: 10.1039/d1cp05249g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
9
|
Conversion of rice husk biomass into electrocatalyst for oxygen reduction reaction in Zn-air battery: Effect of self-doped Si on performance. J Colloid Interface Sci 2022; 606:1014-1023. [PMID: 34487924 DOI: 10.1016/j.jcis.2021.08.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
An outstanding oxygen reduction reaction (ORR) electrocatalyst is firstly developed deriving from sustainable rice husk (RH) biomass. Benefiting from self-doped Si in RH, the higher proportion of pyridine N, graphite N and expecially Fe-Nx as well as thiophene S contents were produced in Si-Fe/S/N-RH3 in comparison with those of Si-free Fe/S/N-RH3. Consequently, the half-wave potential of 0.89 V and the onset potential of 0.96 V are achieved for Si-Fe/S/N-RH3, outperforming the benchmark electrocatalyst Pt/C and other Fe-based electrocatalysts reported in alkaline media. Furthermore, it is found that the exisentence of self-doped Si can improve the graphitization degree of the catalyst, leading to the long-term stability (larger than 85% retention after 40000 s) and prominent methanol tolerance for Si-Fe/S/N-RH3. In addition, Si-Fe/S/N-RH3 shows a power density of 86.2 mW cm-2 and excellent durability in Zn-air battery. The work highlights the potential to develop sustainable and cost-effective ORR electrocatalysts from waste biomass as the substitute for precious metal catalysts.
Collapse
|
10
|
Activity origin of boron doped carbon cluster for thermal catalytic oxidation: Coupling effects of dopants and edges. J Colloid Interface Sci 2022; 613:47-56. [PMID: 35032776 DOI: 10.1016/j.jcis.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Catalytic oxidation plays important roles in energy conversion and environment protection. Boron-doped crystalline carbocatalyst has been demonstrated effective; however, the application potential of boron-doped amorphous carbocatalyst remains to be explored. For amorphous carbon material, finite-sized carbon clusters are the basic structural units, which exhibit unique activity due to edge and size effect. Herein, using sulfur dioxide (SO2) and carbon monoxide (CO) oxidation as probe thermal-catalysis reactions, we found the distribution and reactivity of active sites in boron-doped carbon clusters are simultaneously determined by dopants and edges. According to comparisons of oxygen (O2) chemisorption energy at different sites of symmetric and non-symmetric carbon cluster, the most active site is found to be the edge carbon atom with high electron donation ability, which can be accurately identified by electrophilic Fukui function. More importantly, the reactivity of boron-doped cluster is simultaneously influenced by doping configuration and the type of edge, based on which -O-B-O- configuration embedded into K-region edge (isolated carbon-carbon double bonds that do not belong to Clar sextet) is predicted to exhibit the highest reactivity among various boron doping configurations. This work clarifies unique activity origin of heteroatom-doped amorphous carbon materials, providing new insights into designing high-performance carbocatalysts.
Collapse
|
11
|
Yang M, Lian Z, Si C, Jan F, Li B. Revealing the intrinsic relation between heteroatom dopants and graphene quantum dots as a bi-functional ORR/OER catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Shu Y, Fujimoto Y, Miyake K, Uchida Y, Tanaka S, Nishiyama N. Precisely controlled synthesis of Co/N species containing porous carbon for oxygen reduction reaction via anion exchange and CO2 activation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis strategy of highly dispersed Co/N-doped porous carbon materials using anion exchange resin and ionic liquids.
Collapse
Affiliation(s)
- Yasuhiro Shu
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yugo Fujimoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
13
|
Enhanced electrochemical advanced oxidation on boride activated carbon: The influences of boron groups. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Wee JH, Kim CH, Tojo T, Choi GB, Yang CM, Kim YA. Boron-Doped Edges as Active Sites for Water Adsorption in Activated Carbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13179-13186. [PMID: 34724383 DOI: 10.1021/acs.langmuir.1c00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigating the surface properties of heteroatom-doped carbon materials is essential because these versatile materials have found use in a variety of energy and environmental applications; an understanding of these properties would also lead to an improved appreciation of the direct interaction between the reactant and the functionalized surface. Herein, we explore the effect of boron (B) doping on the surface properties of activated carbon (AC) materials based on their water adsorption behavior and oxygen reduction reaction. In the high-temperature B doping process, B-doped AC materials at 1400 °C exhibit an open pore structure with B-O bonds, whereas at a temperature of 1600 °C, a nonporous structure containing a large amount of B-C bonds prevails. The B-O species act as active sites for water adsorption on the carbon surface. On the basis of the isothermal adsorption heat, we suggest that B atoms are present at the pore openings and on the surfaces. The B-O moieties at the open edges improve the electrocatalytic activity, whereas the B-C bonds at the closed edges decrease the electrocatalytic activity because of the stable structure of these bonds. Our findings provide new evidence for the electrocatalytic properties associated with the structure of B-doped edges.
Collapse
Affiliation(s)
- Jae-Hyung Wee
- Alan G. MacDiarmid Energy Research Institute, Department of Polymer Engineering, Graduate School and School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Republic of Korea
| | - Chang Hyo Kim
- Jeonbuk Branch, Honam Division, Korea Conformity Laboratories, 136, Yeosan-ro, Deokjin-gu, Jeonju-si, Jeonbuk 54852, Republic of Korea
| | - Tomohiro Tojo
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Shizuoka Institute of Science and Technology (SIST), 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Go Bong Choi
- Alan G. MacDiarmid Energy Research Institute, Department of Polymer Engineering, Graduate School and School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Cheol-Min Yang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Republic of Korea
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Department of Polymer Engineering, Graduate School and School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
15
|
Esrafili MD, Mousavian P. Catalytic role of B atoms in CO oxidation on B-doped graphene. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Priyadarsini A, Mallik BS. Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface. J Comput Chem 2021; 42:1138-1149. [PMID: 33851446 DOI: 10.1002/jcc.26528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
17
|
Priyadarsini A, Mallik BS. Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions. ACS OMEGA 2021; 6:5368-5378. [PMID: 33681576 PMCID: PMC7931212 DOI: 10.1021/acsomega.0c05538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Molecular oxygen and hydrogen can be obtained from the water-splitting process through the electrolysis technique. However, harnessing energy is very challenging in this way due to the involvement of the 4e- reaction pathway, which is associated with a substantial amount of reaction barrier. After the report of the first N-doped graphene acting as an oxygen reduction reaction catalyst, the scientific community set out on exploring more reliable doping materials, better material engineering techniques, and developing computational models to explain the interfacial reactions. In this study, we modeled the graphene surface with four different nonmetal doping atoms N, B, P, and S individually by replacing a carbon atom from one of the graphitic positions. We report the mechanism of the complete catalytic cycle for each of the doped surfaces by the doping atom. The energy barriers for individual steps were explored using the biased first-principles molecular dynamics simulations to overcome the high reaction barrier. We explain the active sites and provide a comparison between the activation energy obtained by the application of two computational methods. Observing the rate-determining step, that is, oxo-oxo bond formation, S-doped graphene is the most effective. In contrast, N-doped graphene seems to be the least useful for oxygen evolution catalysis compared to the undoped graphene surface. B-doped graphene and P-doped graphene have an equivalent impact on the catalytic cycle.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
18
|
Esrafili MD, Mousavian P. Catalytic role of graphitic nitrogen atoms in the CO oxidation reaction over N-containing graphene: a first-principles mechanistic evaluation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic role of graphitic nitrogen atoms of a series of nitrogen-doped graphene surfaces is explored for low-temperature oxidation of CO using periodic DFT calculations.
Collapse
Affiliation(s)
- Mehdi D. Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh
- Maragheh
- Iran
| | - Parisasadat Mousavian
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh
- Maragheh
- Iran
- Department of Chemistry, Azarbaijan Shahid Madani University
- Tabriz
| |
Collapse
|
19
|
Wang H, Liu J, Guo J, Ou X, Wang X, Chen G. Novel joint catalytic properties of Fe and N co-doped graphene for CO oxidation. Phys Chem Chem Phys 2020; 22:28376-28382. [PMID: 33300905 DOI: 10.1039/d0cp05683a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using density functional theory, we have performed detailed calculations of the joint catalytic activity of graphene co-doped with Fe and N atoms. The Fe atom can be located on single vacancy graphene and acts as the active site. Due to the strong attraction of the Fe ion, the O-O bond length of the O2 molecule is elongated, which decreases the bonding energy between the O atoms. The energy barrier of CO oxidization is 0.84 eV. When N atoms are doped into the graphene, the interactions between the Fe ions and O2 molecules are stronger, and the O-O bond lengths are elongated further, which makes the desorption of the quasi-CO2 molecule easier. The energy barriers are reduced to 0.62 eV, 0.49 eV, and 0.33 eV for graphene doped with one, two and three N atoms, respectively. The O atom remaining on the Fe ion can form a CO2 molecule with an additional CO molecule. The produced CO2 molecule can be released with a small or even zero energy barrier by adsorbing an O2 molecule. The adsorbed O2 molecule is then involved in the next reaction process, and the material can be used as a recycled catalyst.
Collapse
Affiliation(s)
- Hongbo Wang
- Laboratory of Advanced Materials Physics and Nanodevices, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, China.
| | | | | | | | | | | |
Collapse
|
20
|
Yang M, Lian Z, Si C, Li B. Revealing the role of nitrogen dopants in tuning the electronic and optical properties of graphene quantum dots via a TD-DFT study. Phys Chem Chem Phys 2020; 22:28230-28237. [PMID: 33295343 DOI: 10.1039/d0cp04707d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene quantum dots (GQDs) have been suggested to have a wide range of applications due to their unique electronic and optical properties. Moreover, heteroatom doping has become a viable way to fine-tune the properties of GQDs. However, the working principle of the doping strategy is still not conclusive. In this study, the effects of size, configuration of the nitrogen dopant, and N/C ratio on the electronic and optical properties of GQDs have been carefully examined. First, the variation of the adsorption wavelength of pristine GQDs was evaluated for which a linear relation is established against different diameters. Moreover, it is found that both the configuration and content of nitrogen dopants have a significant impact on the adsorption wavelength and band gap of GQDs. In particular, different nitrogen species could have exactly opposite effects on the adsorption behavior. The origin of the nitrogen doping effect is calibrated from orbital localization, charge analysis, natural transition orbitals, and atomic contribution towards excitation. It is noted that nitrogen doping can simultaneously reduce both light adsorption energy and emission energy compared with the pristine one. This study provides an insightful explanation for the electronic and optical properties of GQDs and consolidates the theory base of the doping strategy.
Collapse
Affiliation(s)
- Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Oxygen Reduction Reaction Catalyzed by Pt3M (M = 3d Transition Metals) Supported on O-doped Graphene. Catalysts 2020. [DOI: 10.3390/catal10020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pt3M (M = 3d transition metals) supported on oxygen-doped graphene as an electrocatalyst for oxygen reduction was investigated using the periodic density functional theory-based computational method. The results show that oxygen prefers to adsorb on supported Pt3M in a bridging di-oxygen configuration. Upon reduction, the O–O bond breaks spontaneously and the oxygen adatom next to the metal–graphene interface is hydrogenated, resulting in co-adsorbed O* and OH* species. Water formation was found to be the potential-limiting step on all catalysts. The activity for the oxygen reduction reaction was evaluated against the difference of the oxygen adsorption energy on the Pt site and the M site of Pt3M and the results indicate that the oxygen adsorption energy difference offers an improved prediction of the oxygen reduction activity on these catalysts. Based on the analysis, Pt3Ni supported on oxygen-doped graphene exhibits an enhanced catalytic performance for oxygen reduction over Pt4.
Collapse
|
22
|
Xiao Y, Zhang W. DFT analysis elementary reaction steps of catalytic activity for ORR on metal-, nitrogen- co-doped graphite embedded structure. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2009-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Novel strategy of electrochemical analysis of DNA bases with enhanced performance based on copper−nickel nanosphere decorated N,B−doped reduced graphene oxide. Biosens Bioelectron 2020; 147:111735. [DOI: 10.1016/j.bios.2019.111735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
|
24
|
Nazer EAA, Muthukrishnan A. Synergistic effect on BCN nanomaterials for the oxygen reduction reaction – a kinetic and mechanistic analysis to explore the active sites. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00911c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rGO doped with boron and nitrogen reduce the oxygen via the dissociative four-electron pathway whereas the two-electron oxygen reduction reaction is more predominant on the rGO doped with either of the two individual heteroatoms.
Collapse
Affiliation(s)
- E. A. Anook Nazer
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- India
| | | |
Collapse
|
25
|
Mantry SP, Mohapatra BD, Behera N, Mishra P, Parhi P, Varadwaj KS. Potentiostatic regeneration of oxygen reduction activity in MnOx @ graphene hybrid nanostructures. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Khan K, Tareen AK, Aslam M, Zhang Y, Wang R, Ouyang Z, Gou Z, Zhang H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. NANOSCALE 2019; 11:21622-21678. [PMID: 31702753 DOI: 10.1039/c9nr05919a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have a wide platform in research and expanding nano- and atomic-level applications. This study is motivated by the well-established 2D catalysts, which demonstrate high efficiency, selectivity and sustainability exceeding that of classical noble metal catalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and/or hydrogen evolution reaction (HER). Nowadays, the hydrogen evolution reaction (HER) in water electrolysis is crucial for the cost-efficient production of a pure hydrogen fuel. We will also discuss another important point related to electrochemical carbon dioxide and nitrogen reduction (ECR and N2RR) in detail. In this review, we mainly focused on the recent progress in the fuel cell technology based on 2D materials, including graphene, transition metal dichalcogenides, black phosphorus, MXenes, metal-organic frameworks, and metal oxide nanosheets. First, the basic attributes of the 2D materials were described, and their fuel cell mechanisms were also summarized. Finally, some effective methods for enhancing the performance of the fuel cells based on 2D materials were also discussed, and the opportunities and challenges of 2D material-based fuel cells at the commercial level were also provided. This review can provide new avenues for 2D materials with properties suitable for fuel cell technology development and related fields.
Collapse
Affiliation(s)
- Karim Khan
- Advanced electromagnetic function laboratory, Dongguan University of Technology (DGUT), Dongguan, Guangdong Province, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ding YM, Ji Y, Dong H, Rujisamphan N, Li Y. Electronic properties and oxygen reduction reaction catalytic activity of h-BeN 2 and MgN 2 by first-principles calculations. NANOTECHNOLOGY 2019; 30:465202. [PMID: 31422944 DOI: 10.1088/1361-6528/ab3c32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, identifying suitable oxygen reduction reaction (ORR) catalysts in novel two-dimensional (2D) materials has attracted more and more research attention. Here, we have studied the catalytic activities of 2D h-BeN2 and MgN2 monolayers for ORR by using first-principles calculations. The calculated results reveal that the direct quasiparticle bandgap of BeN2 monolayer is 3.32 eV, and the indirect bandgap of MgN2 is 3.42 eV. 2D h-BeN2 and MgN2 exhibit high exciton binding energies of 1.07 and 0.83 eV respectively, and their optical properties are determined by bound exciton transitions due to the strong quantum confinement effects. Importantly, h-BeN2 and MgN2 monolayers with positive-charged (+1.6 e) metal atom (Be/Mg) on the surface exhibit excellent adsorption ability for O2 and ORR intermediates, and show better CO tolerance than Pt(111). The calculated free energy plots are always downhill for ORR catalyzed by BeN2 in both acid and alkaline environments, and by MgN2 in alkaline environments. The detailed reaction mechanism analyses show that high-efficient four-electron pathway is the optimal pathway for ORR catalyzed by BeN2 in acid environments. Surprisingly, there is a low overpotential of 0.45 eV for ORR catalyzed by BeN2 in the acid solution and no overpotential in the alkaline solution. Our studies found for the first time that 2D h-BeN2 shows huge potential as a non-precious metal ORR catalyst in acid and alkaline environments.
Collapse
Affiliation(s)
- Yi-Min Ding
- Institute of Functional Nano & Solf Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Lozano T, Rankin RB. Size, Composition, and Support-Doping Effects on Oxygen Reduction Activity of Platinum-Alloy and on Non-platinum Metal-Decorated-Graphene Nanocatalysts. Front Chem 2019; 7:610. [PMID: 31608270 PMCID: PMC6761360 DOI: 10.3389/fchem.2019.00610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Recent investigations reported in the open literature concerning the functionalization of graphene as a support material for transition metal nanoparticle catalysts have examined isolated systems for their potential Oxygen Reduction Reaction (ORR) activity. In this work we present results which characterize the ability to use functionalized graphene (via dopants B, N) to upshift and downshift the adsorption energy of mono-atomic oxygen, O* (the ORR activity descriptor on ORR Volcano Plots), for various compositions of 4-atom, 7-atom, and 19-atom sub-nanometer binary alloy/intermetallic transition metal nanoparticle catalysts on graphene (TMNP-MDG). Our results show several important and interesting features: (1) that the combination of geometric and electronic effects makes development of simple linear mixing rules for size/composition difficult; (2) that the transition from 4- to 7- to 19-atom TMNP on MDG has pronounced effects on ORR activity for all compositions; (3) that the use of B and N as dopants to modulate the graphene-TMNP electronic structure interaction can cause shifts in the oxygen adsorption energy of 0.5 eV or more; (4) that it might be possible to make specific doped-graphene-NixCuy TMNP systems which fall close to the Volcano Peak for ORR. Our results point to systems which should be investigated experimentally and may improve the viability of future fuel cell or other ORR applications, and provide new paths for future investigations of more detail for TMNP-MDG screening.
Collapse
Affiliation(s)
- Tamara Lozano
- Department of Chemical Engineering, Villanova University, Villanova, PA, United States
| | - Rees B Rankin
- Department of Chemical Engineering, Villanova University, Villanova, PA, United States
| |
Collapse
|
29
|
Razavi R, Najafi M. Theoretical investigation of the ORR on boron-silicon nanotubes (B-SiNTs) as acceptable catalysts in fuel cells. RSC Adv 2019; 9:31572-31582. [PMID: 35527966 PMCID: PMC9072725 DOI: 10.1039/c9ra05031k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/29/2019] [Indexed: 11/21/2022] Open
Abstract
Here, the potential of boron doped silicon nanotubes (7, 0) as ORR catalysts is examined. Acceptable paths for the ORR on studied catalysts are examined through DFT. The optimum mechanism of the ORR on the surface of B2-SiNT (7, 0) is shown. The ORR on the surface of B2-SiNTs (7, 0) can continue through LH and ER mechanisms. The calculated beginning voltage for the ORR on B2-SiNTs (7, 0) is 0.37 V and it is smaller than the beginning voltage (0.45 V) for platinum-based catalysts. In the acidic solution the beginning voltage for the oxygen reduction process can be evaluated to be 0.97 V, which corresponds to 0.37 V as a minimum overvoltage for the ORR. The B2-SiNTs (7, 0) are suggested as an ORR catalyst in acidic environments.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft Jiroft Iran
| | - Meysam Najafi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
30
|
Liu Q, Wang S, Chen G, Liu Q, Kong X. Activating Graphyne Nanosheet via sp-Hybridized Boron Modulation for Electrochemical Nitrogen Fixation. Inorg Chem 2019; 58:11843-11849. [PMID: 31436965 DOI: 10.1021/acs.inorgchem.9b02280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploring new metal-free catalysts with high activity for nitrogen reduction reaction (NRR) is highly desirable but remains a big challenge. Graphyne (GY) is a typical two-dimensional carbon material with many excellent properties. However, the NRR has rarely been envisaged on a GY-based metal-free catalyst up to now. Density functional theory calculations reveal that although pristine GY is inactive for N2 reduction, boron modulation can endow it with efficient activity toward NRR. Natural bond orbitals analysis, spin/charge density distributions, and free energy change diagrams are performed and discussed. Three boron doping formats including sp2-substituted, sp-substituted, and adsorbed configuration are considered. The obtained data show sp-substitution will induce local moderate spin and charge densities at the boron site on the GY surface, which is convenient for N2 adsorption and activation, and conductive to N-related intermediates formation and transformation. Moreover, the incorporated sp-hybridized boron can provide one empty p orbital and one occupied p orbital around itself, which plays a key role as an electron reservoir to accept electrons from and donate electrons to the adsorbed N-related species, and thus facilitate N2 reduction and ammonia synthesis. Henceforth, it provides more opportunities for preparing GY and other carbon materials as efficient catalysts toward renewable energy conversion and storage.
Collapse
Affiliation(s)
- Qilong Liu
- Key Laboratory for the Precision and Green Synthetic Chemistry and Applications, Ministry of Education , Huaibei Normal University , Huaibei 235000 , Anhui , P. R. China
| | - Sini Wang
- Key Laboratory for the Precision and Green Synthetic Chemistry and Applications, Ministry of Education , Huaibei Normal University , Huaibei 235000 , Anhui , P. R. China
| | - Guilin Chen
- College of Physics and Energy , Fujian Normal University , Fuzhou , Fujian 350007 , P. R. China
| | - Qiangchun Liu
- Key Laboratory for the Precision and Green Synthetic Chemistry and Applications, Ministry of Education , Huaibei Normal University , Huaibei 235000 , Anhui , P. R. China
| | - Xiangkai Kong
- Key Laboratory for the Precision and Green Synthetic Chemistry and Applications, Ministry of Education , Huaibei Normal University , Huaibei 235000 , Anhui , P. R. China.,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China
| |
Collapse
|
31
|
Ashraf MA, Liu Z, Li C, Peng WX, Najafi M. Examination of potential of B-CNT (6, 0), Al-CNT (6, 0) and Ga-CNT (6, 0) as novel catalysts to oxygen reduction reaction: A DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M, Stefanescu I. Iodinated carbon materials for oxygen reduction reaction in proton exchange membrane fuel cell. Scalable synthesis and electrochemical performances. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Li Y, Yang B, Yan L, Gao W, Najafi M. Role of boron doped silicon nanocage (B-Si48) as catalyst for oxygen reduction reaction in fuel cells. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Sun M, Wang X, Shang X, Liu X, Najafi M. Investigation of performance of aluminum doped carbon nanotube (8, 0) as adequate catalyst to oxygen reduction reaction. J Mol Graph Model 2019; 92:123-130. [PMID: 31352206 DOI: 10.1016/j.jmgm.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 07/19/2019] [Indexed: 11/17/2022]
Abstract
The discovery of novel nano-catalysts to oxygen reduction reaction with high performance due to various application of fuel cells is very important. In present study the potential of aluminum doped carbon nanotube (8, 0) to oxygen reduction reaction in acidic condition was examined through theoretical models. The possible paths to oxygen reduction reaction on Al2-CNT (8, 0) surfaces were investigated and optimal path was identified from thermodynamic standpoint. Results indicated that the Al2-CNT (8, 0) catalyzed the oxygen reduction reaction through the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The Al2-CNT (8, 0) catalyst has much better methanol and CO tolerance than platinum-based catalysts. In this study, the overpotential value of oxygen reduction reaction on aluminum doped carbon nanotube (8, 0) surface (ca 0.38 V) is lower than corresponding values on platinum-based catalysts (ca 0.45 V). Finally, results demonstrated that the Al2-CNT (8, 0) can be proposed as efficiency catalyst to oxygen reduction reaction.
Collapse
Affiliation(s)
- Meng Sun
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China.
| | - Xue Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Xiaomin Shang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Xiaoqiu Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, China
| | - Meysam Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, 67149-67346, Iran.
| |
Collapse
|
35
|
Zhao X, Shi J, Ji Y, Liu Y. The electronic structure underlying electrocatalysis of two‐dimensional materials. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin Texas
| | - Jianjian Shi
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin Texas
| | - Yujin Ji
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin Texas
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin Texas
| |
Collapse
|
36
|
|
37
|
Qin Y, Wu HH, Zhang LA, Zhou X, Bu Y, Zhang W, Chu F, Li Y, Kong Y, Zhang Q, Ding D, Tao Y, Li Y, Liu M, Zeng XC. Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04117] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Qin
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hong-Hui Wu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Lei A Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Xiao Zhou
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunfei Bu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Wei Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Fuqiang Chu
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yutong Li
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yong Kong
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Dong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Yongxin Tao
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yongxin Li
- The Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
38
|
Yao-Dong Song, Wang L, Wang QT. Enhanced Adsorption of SO2 Molecule on Al- and Si-Doped Pyridinic Nitrogen Doped Graphene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418120385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Origin of the catalytic activity of phosphorus doped MoS 2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Sci Rep 2018; 8:13292. [PMID: 30185985 PMCID: PMC6125367 DOI: 10.1038/s41598-018-31354-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Phosphorus doped MoS2 nanosheets (P-doped MoS2) have been reported as excellent oxygen reduction reaction (ORR) catalysts with four-electron selectivity in alkaline solution. By performing density functional theory (DFT) calculations, we revealed the detailed reaction mechanism and the key reaction sites on surface of P-doped MoS2 for ORR catalysis. The double P-doped MoS2 (2P-MoS2) is calculated to be more stable than the single P-doped MoS2 (P-MoS2), and the configuration with two P atoms in neighboring sites exhibits the highest stability. The surface of P-doped MoS2 is found highly active for dissociation of O2. Comparative calculations reveal that P-MoS2 is unsuitable as ORR catalyst due to the high dissociation barrier of H2O (1.19 and 2.06 eV for the first and second adsorbed H2O), while the 2P-MoS2 shows good ORR catalytic activity with much lower dissociation barrier of H2O (0.62 eV). Furthermore, we elucidated that the ORR catalytic activity in 2P-MoS2 originates from the activated S2 atom, which provides an extra adsorption site for the first H2O and the following OH group benefited from the enhanced hydrogen bond interaction. Our results illustrate the mechanisms of doped MoS2 based catalysts and provide rational way for designing ORR catalysts with high activity.
Collapse
|
40
|
Li R, Li H, Long J, He J, Zhang J, Zheng H, Gou X. Nitrogen and Phosphorus Dual-doped Porous Carbon Nanosheets for Efficient Oxygen Reduction in Both Alkaline and Acidic Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201800742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Huinan Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Jing He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Jimin Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Hongying Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| | - Xinglong Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 P. R. China
| |
Collapse
|
41
|
Song YD, Wang L, Wang QT. Computational study of the NO, SO 2, and NH 3 adsorptions on fragments of 3N-graphene and Al/3N graphene. J Mol Model 2018; 24:210. [PMID: 30022434 DOI: 10.1007/s00894-018-3734-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are -220.5 kJ mol-1 for Al/3NG-NO, -111.9 kJ mol-1 for Al/3NG-NH3, and -347.7 kJ mol-1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Qian-Ting Wang
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China.
| |
Collapse
|
42
|
Yang N, Li L, Li J, Ding W, Wei Z. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: charge, spin density and ligand effect. Chem Sci 2018; 9:5795-5804. [PMID: 30079190 PMCID: PMC6050597 DOI: 10.1039/c8sc01801d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022] Open
Abstract
For metal-doped-G and dual-heteroatom-doped-G, the triple effect can activate double carbon sites, and lead to the ORR following the dissociative mechanism, which breaks through the activity limitation of the association mechanism, and further enhances the catalytic activity for the ORR.
To enhance the intrinsic activity of and increase the number of active sites in heteroatom-doped graphene (doped-G), it is necessary to recognize the origin of its catalytic activity, and to search for a universal definition and description of the different active sites. Herein, we report an evaluation of a series of heteroatom-doped graphene materials as oxygen reduction reaction (ORR) catalysts with the aid of density functional theory (DFT) calculations. The results of the DFT calculations indicate that the intrinsic catalytic activity and the ORR mechanism depend on the triple effect, that is, the charge, the spin density and the coordinate state (ligand effect) of the carbon sites. The contribution of the above effects towards increasing the binding energies of *OOH or *OH has the following order: negative charge effect < positive charge effect < low spin effect < ligand effect < high spin effect. For nonmetallic single-heteroatom-doped-G, the triple effect separately activates the carbon sites around the doped atom. On each single carbon active site, only the end-on adsorption of *OOH is preferred, leading to the ORR following the associative mechanism, which has an intrinsic limitation in its overpotential of 0.44 V. However, for metal-doped-G and dual-heteroatom-doped-G, the triple effect can activate double carbon sites, and lead to the ORR following the dissociative mechanism, which breaks through the activity limitation of the associative mechanism, and further enhances the catalytic activity for the ORR. With comprehensive theoretical calculation, we conclude that it is possible for the heteroatom-doped-G, if well-modulated via the triple effect, to exceed Pt-based materials in catalysis of the ORR.
Collapse
Affiliation(s)
- Na Yang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology , Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , School of Chemistry and Chemical Engineering , Chongqing University , Shazhengjie 174 , Chongqing 400044 , China . ; ; Tel: +86 2365678945
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology , Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , School of Chemistry and Chemical Engineering , Chongqing University , Shazhengjie 174 , Chongqing 400044 , China . ; ; Tel: +86 2365678945
| | - Jing Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology , Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , School of Chemistry and Chemical Engineering , Chongqing University , Shazhengjie 174 , Chongqing 400044 , China . ; ; Tel: +86 2365678945
| | - Wei Ding
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology , Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , School of Chemistry and Chemical Engineering , Chongqing University , Shazhengjie 174 , Chongqing 400044 , China . ; ; Tel: +86 2365678945
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology , Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , School of Chemistry and Chemical Engineering , Chongqing University , Shazhengjie 174 , Chongqing 400044 , China . ; ; Tel: +86 2365678945
| |
Collapse
|
43
|
Qin L, Wang L, Yang X, Ding R, Zheng Z, Chen X, Lv B. Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Zhang Y, Lin Y, Jiang H, Wu C, Liu H, Wang C, Chen S, Duan T, Song L. Well-Defined Cobalt Catalyst with N-Doped Carbon Layers Enwrapping: The Correlation between Surface Atomic Structure and Electrocatalytic Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702074. [PMID: 29239096 DOI: 10.1002/smll.201702074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Admittedly, the surface atomic structure of heterogenous catalysts toward the electrochemical oxygen reduction reaction (ORR) are accepted as the important features that can tune catalytic activity and even catalytic pathway. Herein, a surface engineering strategy to controllably synthesize a carbon-layer-wrapped cobalt-catalyst from 2D cobalt-based metal-organic frameworks is elaborately demonstrated. Combined with synchrotron radiation X-ray photoelectron spectroscopy, the soft X-ray absorption near-edge structure results confirmed that rich covalent interfacial CoNC bonds are efficiently formed between cobalt nanoparticles and wrapped carbon-layers during the polydopamine-assisted pyrolysis process. The X-ray absorption fine structure and corresponding extended X-ray absorption fine structure spectra further reveal that the wrapped cobalt with Co-N coordinations shows distinct surface distortion and atomic environmental change of Co-based active sites. In contrast to the control sample without coating layers, the 800 °C-annealed cobalt catalyst with N-doped carbon layers enwrapping achieves significantly enhanced ORR activity with onset and half-wave potentials of 0.923 and 0.816 V (vs reversible hydrogen electrode), highlighting the important correlation between surface atomic structure and catalytic property.
Collapse
Affiliation(s)
- Youkui Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yunxiang Lin
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Hongliang Jiang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Chuanqiang Wu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Tao Duan
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| |
Collapse
|
45
|
Song YD, Wang L, Wu LM. Theoretical study of the CO, NO, and N2 adsorptions on Li-decorated graphene and boron-doped graphene. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption properties of common gas molecules (CO, NO, and N2) on the surface of Li-decorated pristine graphene and Li-decorated boron doped graphene are investigated using density functional theory. The adsorption energy, charge transfer, and density of states of gas molecules on three surfaces have been calculated and discussed, respectively. The results show that Li-decorated pristine graphene has strong interaction with CO and N2. Compared with Li-decorated pristine graphene, Li-decorated boron doped graphene exhibit a comparable adsorption ability of CO and N2. Moreover, Li-decorated boron doped graphene have a more significant adsorption energy to NO than that of Li-decorated pristine graphene because of the chemical interaction of the NO gas molecule. The strong interaction between the NO molecule and substrate (Li-decorated boron doped graphene) induces dramatic changes to the electrical conductivity of Li-decorated boron doped graphene. The results indicate that Li-decorated boron doped graphene would be an excellent candidate for sensing NO gas.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, People’s Republic of China
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian 350118, People’s Republic of China
| | - Li-Ming Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
46
|
Ji S, Zhao J. Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. NEW J CHEM 2018. [DOI: 10.1039/c8nj03279c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The B-doped graphene is a quite promising metal free electrocatalyst for NO reduction to N2O and NH3.
Collapse
Affiliation(s)
- Shuang Ji
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- China
- Key Laboratory of Photonic and Electronic Bandgap Materials
| |
Collapse
|
47
|
Damte JY, Lyu SL, Leggesse EG, Jiang JC. Methanol decomposition reactions over a boron-doped graphene supported Ru–Pt catalyst. Phys Chem Chem Phys 2018; 20:9355-9363. [DOI: 10.1039/c7cp07618e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-depth investigations of adsorption and decomposition of methanol over boron-doped graphene supported Ru–Pt catalyst are presented using periodic density functional theory calculations. Methanol decomposition on such catalyst proceeds through formation of methoxide (CH3O) and via stepwise dehydrogenation of formaldehyde (CH2O), formyl (CHO), and carbon monoxide (CO).
Collapse
Affiliation(s)
- Jemal Yimer Damte
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Shang-lin Lyu
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Ermias Girma Leggesse
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Jyh Chiang Jiang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| |
Collapse
|
48
|
|
49
|
Affiliation(s)
- Maocong Hu
- Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zhenhua Yao
- Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianqin Wang
- Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
50
|
Constructing a novel nonlinear optical materials: substituents and heteroatoms in π-π systems effect on the first hyperpolarizability. Struct Chem 2017. [DOI: 10.1007/s11224-017-0918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|