• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4610642)   Today's Articles (5052)   Subscriber (49380)
For: Le Valant A, Comminges C, Tisseraud C, Canaff C, Pinard L, Pouilloux Y. The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu + ZnO mechanical mixtures. J Catal 2015;324:41-9. [DOI: 10.1016/j.jcat.2015.01.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Number Cited by Other Article(s)
1
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
2
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. Int J Mol Sci 2023;24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]  Open
3
Maor II, Heyte S, Elishav O, Mann-Lahav M, Thuriot-Roukos J, Paul S, Grader GS. Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:635. [PMID: 36839003 PMCID: PMC9967565 DOI: 10.3390/nano13040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
4
Guo D, Liu J, Zhao X, Yang X, Chen X. Comparative computational study of CO2 hydrogenation and dissociation on metal-doped Pd clusters. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
5
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
6
Zhang T, Yan H, Liu Z, Zhan W, Yu H, Liao Y, Liu Y, Zhou X, Chen X, Feng X, Yang C. Engineering a Ni1Fe1–ZnO Interface to Boost Selective Hydrogenation of Methyl Stearate to Octadecanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Ranjan P, Saptal VB, Bera JK. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. CHEMSUSCHEM 2022;15:e202201183. [PMID: 36036640 DOI: 10.1002/cssc.202201183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
8
Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D. Recent Application of Core-Shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:3877. [PMID: 36364653 PMCID: PMC9655136 DOI: 10.3390/nano12213877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
9
Vu TTN, Fongarland P, Vanoye L, Bornette F, Postole G, Desgagnés A, Iliuta MC. Metallurgical Residue-Derived Cu–ZnO-Based Catalyst for CO2 Hydrogenation to Methanol: An Insight on the Effect of the Preparation Method. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
10
Xu Y, Gao Z, Peng L, Liu K, Yang Y, Qiu R, Yang S, Wu C, Jiang J, Wang Y, Tan W, Wang H, Li J. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
11
Dalebout R, Barberis L, Totarella G, Turner SJ, La Fontaine C, de Groot FMF, Carrier X, van der Eerden AMJ, Meirer F, de Jongh PE. Insight into the Nature of the ZnO x Promoter during Methanol Synthesis. ACS Catal 2022;12:6628-6639. [PMID: 35692251 PMCID: PMC9171830 DOI: 10.1021/acscatal.1c05101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/08/2022] [Indexed: 11/30/2022]
12
Amann P, Klötzer B, Degerman D, Köpfle N, Götsch T, Lömker P, Rameshan C, Ploner K, Bikaljevic D, Wang HY, Soldemo M, Shipilin M, Goodwin CM, Gladh J, Halldin Stenlid J, Börner M, Schlueter C, Nilsson A. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science 2022;376:603-608. [PMID: 35511988 DOI: 10.1126/science.abj7747] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
13
Shao Y, Kosari M, Xi S, Zeng HC. Single Solid Precursor-Derived Three-Dimensional Nanowire Networks of CuZn-Silicate for CO2 Hydrogenation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
15
K+-induced formation of granular and dense copper phyllosilicate precursor converts dimethyl oxalate to ethylene glycol in absence of H2. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
16
Guzmán H, Salomone F, Bensaid S, Castellino M, Russo N, Hernández S. CO2 Conversion to Alcohols over Cu/ZnO Catalysts: Prospective Synergies between Electrocatalytic and Thermocatalytic Routes. ACS APPLIED MATERIALS & INTERFACES 2022;14:517-530. [PMID: 34965095 PMCID: PMC8762640 DOI: 10.1021/acsami.1c15871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
17
Saedy S, Newton MA, Zabilskiy M, Lee JH, Krumeich F, Ranocchiari M, van Bokhoven JA. Copper–zinc oxide interface as a methanol-selective structure in Cu–ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00224h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
18
Fehr SM, Nguyen K, Krossing I. Realistic Operando‐ DRIFTS Studies on Cu/ZnO Catalysts for CO 2 Hydrogenation to Methanol – Direct Observation of Mono‐ionized Defect Sites and Implications for Reaction Intermediates. ChemCatChem 2021. [DOI: 10.1002/cctc.202101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
19
Understanding of the Key Factors Determining the Activity and Selectivity of CuZn Catalysts in Hydrogenolysis of Alkyl Esters to Alcohols. Catalysts 2021. [DOI: 10.3390/catal11111417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
20
Ashok A, Kumar A, Saad MAS, Al-Marri MJ. Electrocatalytic conversion of CO2 over in-situ grown Cu microstructures on Cu and Zn foils. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
21
Li Z, Huang W. Hydride species on oxide catalysts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021;33:433001. [PMID: 34311453 DOI: 10.1088/1361-648x/ac17ad] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
22
Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 2021;5:564-579. [PMID: 37117584 DOI: 10.1038/s41570-021-00289-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
23
Gell L, Lempelto A, Kiljunen T, Honkala K. Influence of a Cu-zirconia interface structure on CO2 adsorption and activation. J Chem Phys 2021;154:214707. [PMID: 34240985 DOI: 10.1063/5.0049293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Qi T, Li W, Li H, Ji K, Chen S, Zhang Y. Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
25
L’hospital V, Angelo L, Zimmermann Y, Parkhomenko K, Roger AC. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
26
Golunski S, Burch R. CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion. Top Catal 2021. [DOI: 10.1007/s11244-021-01427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Lin L, Wang G, Zhao F. CO 2 Hydrogenation to Methanol on ZnO/ZrO 2 Catalysts: Effects of Zirconia Phase. ChemistrySelect 2021. [DOI: 10.1002/slct.202002108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
28
Fang X, Chen C, Jia H, Li Y, Liu J, Wang Y, Song Y, Du T, Liu L. Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
29
Photo-Chemically-Deposited and Industrial Cu/ZnO/Al2O3 Catalyst Material Surface Structures During CO2 Hydrogenation to Methanol: EXAFS, XANES and XPS Analyses of Phases After Oxidation, Reduction, and Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
30
Inverse ZnO/Cu catalysts for methanol synthesis from CO2 hydrogenation. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01919-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
31
CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3. J Catal 2021. [DOI: 10.1016/j.jcat.2020.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
32
Juntrapirom S, Santatiwongchai J, Watwiangkham A, Suthirakun S, Butburee T, Faungnawakij K, Chakthranont P, Hirunsit P, Rungtaweevoranit B. Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO2 conversion to C2 products. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01839f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
33
Yao L, Pan Y, Wu D, Li J, Xie R, Peng Z. Approaching full-range selectivity control in CO2 hydrogenation to methanol and carbon monoxide with catalyst composition regulation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00129a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
34
Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101361] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Minyukova TP, Khassin AA, Khasin AV, Yurieva TM. Formation of Effective Copper-Based Catalysts of Methanol Synthesis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420060087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
36
Zheng YL, Liu HC, Zhang YW. Engineering Heterostructured Nanocatalysts for CO2 Transformation Reactions: Advances and Perspectives. CHEMSUSCHEM 2020;13:6090-6123. [PMID: 32662587 DOI: 10.1002/cssc.202001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
37
Yu J, Yang M, Zhang J, Ge Q, Zimina A, Pruessmann T, Zheng L, Grunwaldt JD, Sun J. Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04371] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
38
Narkhede N, Zheng H, Zhang H, Zhang G, Li Z. Isomorphous substitution method to fabricating pure phase Al‐doped zinc malachite: defects driven promotion improvement and enhanced synergy between Cu−ZnO. ChemCatChem 2020. [DOI: 10.1002/cctc.202001030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
39
Yongjun G, Liu J, Bashir S. Electrocatalysts for direct methanol fuel cells to demonstrate China's renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catal Today 2020;374:135-153. [PMID: 33100579 PMCID: PMC7568504 DOI: 10.1016/j.cattod.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
40
Chen S, Zhang J, Song F, Zhang Q, Yang G, Zhang M, Wang X, Xie H, Tan Y. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
41
Gao C, Lyu F, Yin Y. Encapsulated Metal Nanoparticles for Catalysis. Chem Rev 2020;121:834-881. [DOI: 10.1021/acs.chemrev.0c00237] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
42
The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts. Catalysts 2020. [DOI: 10.3390/catal10050533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
43
Wang J, Jin H, Wang WH, Zhao Y, Li Y, Bao M. Ultrasmall Ni-ZnO/SiO2 Synergistic Catalyst for Highly Efficient Hydrogenation of NaHCO3 to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2020;12:19581-19586. [PMID: 32255603 DOI: 10.1021/acsami.0c03037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
44
Zheng H, Narkhede N, Zhang H, Li Z. Oriented Isomorphous Substitution: An Efficient and Alternative Route to Fabricate the Zn Rich Phase Pure (Cu 1− x ,Zn x ) 2 (OH) 2 CO 3 Precursor Catalyst for Methanol Synthesis. ChemCatChem 2020. [DOI: 10.1002/cctc.201902286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
45
Pustovarenko A, Dikhtiarenko A, Bavykina A, Gevers L, Ramírez A, Russkikh A, Telalovic S, Aguilar A, Hazemann JL, Ould-Chikh S, Gascon J. Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO2 to Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00449] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
46
Sun Y, Huang C, Chen L, Zhang Y, Fu M, Wu J, Ye D. Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
47
Volnina EA, Kipnis MA. Modern View of the Mechanism of Methanol Synthesis on Cu-Containing Catalysts. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
48
Lam E, Noh G, Chan KW, Larmier K, Lebedev D, Searles K, Wolf P, Safonova OV, Copéret C. Enhanced CH3OH selectivity in CO2 hydrogenation using Cu-based catalysts generated via SOMC from GaIII single-sites. Chem Sci 2020;11:7593-7598. [PMID: 34094136 PMCID: PMC8159433 DOI: 10.1039/d0sc00465k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
49
Brzezińska M, Keller N, Ruppert AM. Self-tuned properties of CuZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards dimethylfuran production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01917k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
50
Liu Q, Zhao Z, Arai M, Zhang C, Liu K, Shi R, Wu P, Wang Z, Lin W, Cheng H, Zhao F. Transformation of γ-valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al2O3 catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00801j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA