• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635019)   Today's Articles (5)   Subscriber (50004)
For: Abdelrahman OA, Luo HY, Heyden A, Román-Leshkov Y, Bond JQ. Toward rational design of stable, supported metal catalysts for aqueous-phase processing: Insights from the hydrogenation of levulinic acid. J Catal 2015. [DOI: 10.1016/j.jcat.2015.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Number Cited by Other Article(s)
1
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023;123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
2
Yao R, Pinals J, Dorakhan R, Herrera JE, Zhang M, Deshlahra P, Chin YHC. Cobalt-Molybdenum Oxides for Effective Coupling of Ethane Activation and Carbon Dioxide Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
3
Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Int J Mol Sci 2022;23:ijms23020799. [PMID: 35054984 PMCID: PMC8776037 DOI: 10.3390/ijms23020799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]  Open
4
Schwartz TJ, Bond JQ. Leveraging De Donder relations for a thermodynamically rigorous analysis of reaction kinetics in liquid media. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
5
Gopeesingh J, Zhu R, Schuarca R, Yang W, Heyden A, Bond JQ. Kinetic and Mechanistic Analysis of the Hydrodeoxygenation of Propanoic Acid on Pt/SiO2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Demir B, Kropp T, Gilcher EB, Mavrikakis M, Dumesic JA. Effects of water on the kinetics of acetone hydrogenation over Pt and Ru catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
7
Huo J, Tessonnier JP, Shanks BH. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
8
Chen TY, Cheng Z, Desir P, Saha B, Vlachos DG. Fast microflow kinetics and acid catalyst deactivation in glucose conversion to 5-hydroxymethylfurfural. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00391c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
9
Lu Y, Wang Y, Wang Y, Cao Q, Xie X, Fang W. Hydrogenation of levulinic acid to γ-valerolactone over bifunctional Ru/(AlO)(ZrO) catalyst: Effective control of Lewis acidity and surface synergy. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
10
Experimental Evaluation of a New Approach for a Two-Stage Hydrothermal Biomass Liquefaction Process. ENERGIES 2020. [DOI: 10.3390/en13143692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
11
Yao R, Herrera JE, Chen L, Chin YHC. Generalized Mechanistic Framework for Ethane Dehydrogenation and Oxidative Dehydrogenation on Molybdenum Oxide Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Huo X, Vanneste J, Cath TY, Strathmann TJ. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. WATER RESEARCH 2020;175:115688. [PMID: 32171095 DOI: 10.1016/j.watres.2020.115688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
13
Huo J, Shanks BH. Bioprivileged Molecules: Integrating Biological and Chemical Catalysis for Biomass Conversion. Annu Rev Chem Biomol Eng 2020;11:63-85. [PMID: 32155351 DOI: 10.1146/annurev-chembioeng-101519-121127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
14
Yu Z, Lu X, Bai H, Xiong J, Feng W, Ji N. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ‐Valerolactone: Catalytic Activity and Stability. Chem Asian J 2020;15:1182-1201. [DOI: 10.1002/asia.202000006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/31/2020] [Indexed: 11/06/2022]
15
Huo J, Pham HN, Cheng Y, Lin HH, Roling LT, Datye AK, Shanks BH. Deactivation and regeneration of carbon supported Pt and Ru catalysts in aqueous phase hydrogenation of 2-pentanone. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00163e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019;120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
17
Kung MC, Ye J, Kung HH. 110th Anniversary: A Perspective on Catalytic Oxidative Processes for Sustainable Water Remediation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
18
Šivec R, Grilc M, Huš M, Likozar B. Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00898] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Liu F, Ftouni J, Bruijnincx PCA, Weckhuysen BM. Phase‐Dependent Stability and Substrate‐Induced Deactivation by Strong Metal‐Support Interaction of Ru/TiO 2 Catalysts for the Hydrogenation of Levulinic Acid. ChemCatChem 2019. [DOI: 10.1002/cctc.201802040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
20
Shi H. Valorization of Biomass‐derived Small Oxygenates: Kinetics, Mechanisms and Site Requirements of H2‐involved Hydrogenation and Deoxygenation Pathways over Heterogeneous Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201801828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
21
Contreras-Mora J, Banerjee R, Bolton B, Valentin J, Monnier JR, Williams CT. Characterization and Evaluation of Carbon-Supported Noble Metals for the Hydrodeoxygenation of Acetic Acid. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Hussain SK, Velisoju VK, Rajan NP, Kumar BP, Chary KVR. Synthesis of γ-Valerolactone from Levulinic Acid and Formic Acid over Mg-Al Hydrotalcite Like Compound. ChemistrySelect 2018. [DOI: 10.1002/slct.201800536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
23
The Promoting Effect of Ce on the Performance of Au/CexZr1−xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid. Catalysts 2018. [DOI: 10.3390/catal8060241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
24
Vu HT, Harth FM, Wilde N. Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Front Chem 2018;6:143. [PMID: 29868552 PMCID: PMC5964160 DOI: 10.3389/fchem.2018.00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022]  Open
25
Zhu R, Chatzidimitriou A, Bond JQ. Influence of vanadate structure and support identity on catalytic activity in the oxidative cleavage of methyl ketones. J Catal 2018. [DOI: 10.1016/j.jcat.2017.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
26
Huo J, Duan P, Pham HN, Chan YJ, Datye AK, Schmidt-Rohr K, Shanks BH. Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00947c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
27
Maximov AL, Zolotukhina AV, Mamedli AA, Kulikov LA, Karakhanov EA. Selective Levulinic Acid Hydrogenation in the Presence of Hybrid Dendrimer-Based Catalysts. Part I: Monometallic. ChemCatChem 2017. [DOI: 10.1002/cctc.201700691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
28
Vardon DR, Settle AE, Vorotnikov V, Menart MJ, Eaton TR, Unocic KA, Steirer KX, Wood KN, Cleveland NS, Moyer KE, Michener WE, Beckham GT. Ru-Sn/AC for the Aqueous-Phase Reduction of Succinic Acid to 1,4-Butanediol under Continuous Process Conditions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Ftouni J, Genuino HC, Muñoz‐Murillo A, Bruijnincx PCA, Weckhuysen BM. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017;10:2891-2896. [PMID: 28603841 PMCID: PMC5575478 DOI: 10.1002/cssc.201700768] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 06/07/2023]
30
Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017;10:1720-1732. [PMID: 28328085 DOI: 10.1002/cssc.201601769] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Indexed: 06/06/2023]
31
Abdelrahman OA, Heyden A, Bond JQ. Microkinetic analysis of C3–C5 ketone hydrogenation over supported Ru catalysts. J Catal 2017. [DOI: 10.1016/j.jcat.2017.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
32
Self-assembled Pd/CeO2 catalysts by a facile redox approach for high-efficiency hydrogenation of levulinic acid into gamma-valerolactone. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
33
A Sol-Gel Ruthenium-Niobium-Silicon Mixed-Oxide Bifunctional Catalyst for the Hydrogenation of Levulinic Acid in the Aqueous Phase. ChemCatChem 2017. [DOI: 10.1002/cctc.201601547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
34
Bond JQ, Jungong CS, Chatzidimitriou A. Microkinetic analysis of ring opening and decarboxylation of γ-valerolactone over silica alumina. J Catal 2016. [DOI: 10.1016/j.jcat.2016.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
35
Zhang J, Xie B, Wang L, Yi X, Wang C, Wang G, Dai Z, Zheng A, Xiao FS. Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones. ChemCatChem 2016. [DOI: 10.1002/cctc.201600739] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
36
Meng Q, Zheng H, Zhu Y, Li Y. Study on the reaction pathway in decarbonylation of biomass-derived 5-hydroxymethylfurfural over Pd-based catalyst. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
37
Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts. Catalysts 2016. [DOI: 10.3390/catal6090131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
38
Ftouni J, Muñoz-Murillo A, Goryachev A, Hofmann JP, Hensen EJM, Lu L, Kiely CJ, Bruijnincx PCA, Weckhuysen BM. ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00730] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
39
Stanford JP, Soto MC, Pfromm PH, Rezac ME. Aqueous phase hydrogenation of levulinic acid using a porous catalytic membrane reactor. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
40
A facile strategy for confining ZnPd nanoparticles into a ZnO@Al2O3 support: A stable catalyst for glycerol hydrogenolysis. J Catal 2016. [DOI: 10.1016/j.jcat.2016.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Tan J, Cui J, Ding G, Deng T, Zhu Y, Li YW. Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01374g] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA