1
|
Olszok V, Rembe P, Grieb T, Wijeyeratnam EJ, Rosenauer A, Weber AP. Synergizing ICP-MS, STEM-EDXS, and SMPS single particle analytics exemplified by superlattice L1 0 Pt/Fe aerosol nanoparticles produced by spark ablation. NANOSCALE ADVANCES 2024; 6:3895-3903. [PMID: 39050956 PMCID: PMC11265579 DOI: 10.1039/d4na00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Spark ablation was used to continuously synthesize bimetallic L10 Pt/Fe nanoparticles in an aerosol process involving a furnace and hydrogen as a reducing process gas. For the formation of Pt/Fe in the favorable L10 crystal configuration, which is a promising electrocatalyst, the Pt-Fe ratio plays a crucial role. State-of-the-art analytics for such multi-element nanoparticles include, among others, electron microscopy (EM) with an element mapping function, such as scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDXS). Morphological characteristics, local compositions, and element distributions within single particles can be easily derived from EM for a small number of particles. However, a statistical evaluation aiming at the composition of hundreds of single Pt/Fe particles can barely be addressed with such analytics. Driven by the lack of analytical setups aiming at the recording of composition and size distribution of nanoparticles by online diagnostics, this work focuses on a single-particle inductively coupled plasma mass spectrometry (spICP-MS) setup able to resolve this issue. The combination of nanoparticle dilution and classification with spICP-MS allows for the analysis of thousands of multi-element aerosol nanoparticles within minutes. Hence, this article elaborates on the synergy of conducting STEM-EDXS and spICP-MS measurements in parallel, giving the opportunity to multi-dimensionally characterize nanoparticles consisting of more than one element. Beyond metallic particles, the presented setup even allows for the analysis of hetero-aggregated oxidic particles, such as Pt/Fe2O3. Including further offline analytics like X-ray diffraction (XRD), the formation of L10 Pt/Fe was found to be process gas-dependent and to set in at 400 °C, yielding particles with 56% L10 content at 1000 °C under a reducing atmosphere.
Collapse
Affiliation(s)
- Vinzent Olszok
- Clausthal University of Technology, Institute of Particle Technology Leibnizstrasse 19 38678 Clausthal-Zellerfeld Germany
| | - Philipp Rembe
- Clausthal University of Technology, Institute of Particle Technology Leibnizstrasse 19 38678 Clausthal-Zellerfeld Germany
| | - Tim Grieb
- University of Bremen, Institute of Solid State Physics, Department of Electron Microscopy Otto-Hahn-Allee 1 28359 Bremen Germany
| | - Eshan J Wijeyeratnam
- Clausthal University of Technology, Institute of Particle Technology Leibnizstrasse 19 38678 Clausthal-Zellerfeld Germany
| | - Andreas Rosenauer
- University of Bremen, Institute of Solid State Physics, Department of Electron Microscopy Otto-Hahn-Allee 1 28359 Bremen Germany
| | - Alfred P Weber
- Clausthal University of Technology, Institute of Particle Technology Leibnizstrasse 19 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
2
|
Influences of Co-Content on the Physico-Chemical and Catalytic Properties of Perovskite GdCoxFe1−xO3 in CO Hydrogenation. Catalysts 2022. [DOI: 10.3390/catal13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effect of the substitution of cobalt into the GdFeO3 perovskite structure on the selective hydrogenation of CO was investigated. A series of GdCoxFe1−xO3 (x = 0; 0.2; 0.5; 0.8; 1) samples were synthesized by sol-gel technology and characterized by XRD, BET specific area, DSC, TG, EDX and XPS. The experimental data made it possible to reveal a correlation between the state of iron and cobalt atoms, the fractions of surface and lattice oxygen, and catalytic characteristics. It has been found that varying the composition of GdCoxFe1−xO3 complex oxides leads to a change in the oxygen-metal binding energy in Gd-O-Me, the ratio of metals in various oxidation states, and the amount of surface and lattice oxygen, which affects the adsorption and catalytic characteristics of complex oxides.
Collapse
|
3
|
Gao J, Shakouri M, Hu Y, Ghanbari S, Niu C, Liao J, Dalai A, Wang H. Dual site contiguity study for CO2 catalytic activation and CO2 reforming of CH4 over Ni and NiM2 catalysts with MgO-spinel support. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Abstract
Clean biogas, produced by anaerobic digestion of biomasses or organic wastes, is one of the most promising substitutes for natural gas. After its purification, it can be valorized through different reforming processes that convert CH4 and CO2 into synthesis gas (a mixture of CO and H2). However, these processes have many issues related to the harsh conditions of reaction used, the high carbon formation rate and the remarkable endothermicity of the reforming reactions. In this context, the use of the appropriate catalyst is of paramount importance to avoid deactivation, to deal with heat issues and mild reaction conditions and to attain an exploitable syngas composition. The development of a catalyst with high activity and stability can be achieved using different active phases, catalytic supports, promoters, preparation methods and catalyst configurations. In this paper, a review of the recent findings in biogas reforming is presented. The different elements that compose the catalytic system are systematically reviewed with particular attention on the new findings that allow to obtain catalysts with high activity, stability, and resistance towards carbon formation.
Collapse
|
5
|
Baraka S, Bouearan K, Caner L, Fontaine C, Epron F, Brahmi R, Bion N. Catalytic performances of natural Ni-bearing clay minerals for production of syngas from dry reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Zou X, Li X, Gao X, Gao Z, Zuo Z, Huang W. density functional theory and kinetic Monte Carlo simulation study the strong metal–support interaction of dry reforming of methane reaction over Ni based catalysts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dry reforming of methane (DRM) reaction has drawn much interest due to the reduction of greenhouse gases and production of syngas. Coking and sintering have hindered the large-scale operations of Ni-based catalysts in DRM reactions at high temperatures. Smart designs of Ni-based catalysts are comprehensively summarized in fourth aspects: surface regulation, oxygen defects, interfacial engineering, and structural optimization. In each part, details of the designs and anti-deactivation mechanisms are elucidated, followed by a summary of the main points and the recommended strategies to improve the catalytic performance, energy efficiency, and utilization rate.
Collapse
|
8
|
Liu Z, Gao F, Zhu YA, Liu Z, Zhu K, Zhou X. Bi-reforming of methane with steam and CO 2 under pressurized conditions on a durable Ir-Ni/MgAl 2O 4 catalyst. Chem Commun (Camb) 2020; 56:13536-13539. [PMID: 33064118 DOI: 10.1039/d0cc05874b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High pressure reforming of methane is critical for process economics, but imposes increased risk of catalyst coke deposition. Herein, a coke- and sintering-resistant Ir-Ni alloy catalyst is presented, which is durable in methane bi-reforming at 850 °C and 20 bars for up to 434 h.
Collapse
Affiliation(s)
- Zhongxian Liu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Dry reforming of methane (DRM) can effectively convert two greenhouse gases into high-valued chemicals, in which the syngas produced by the reaction can be directly used as raw gases for Fischer–Tropsch synthesis and methanol synthesis. Ni-based catalysts for the DRM reaction with comparable initial activity to noble metals are the focus of most researchers, but their poor carbon deposition resistance easily causes their low stability. More importantly, the nickel loading will affect the catalytic activity and carbon deposition resistance of the catalyst. Herein, a series of Ni/Al2O3 catalysts with bimodal pores was prepared and characterized by X-ray diffraction (XRD), N2 physical adsorption–desorption, H2-temperature programmed reduction (H2-TPR), temperature programmed hydrogenation (TPH), Raman, and thermogravimetric analysis (TG). The results show that the interesting bimodal structure catalysts could provide a high surface area and contribute to the mass transfer. Besides, the catalytic performance of the DRM reaction is sensitive to nickel loadings. In this study, the Ni/Al2O3 catalyst with nickel loadings of 6% and 8% exhibited excellent catalytic activity and carbon deposition resistance. These findings will provide a new strategy to design a highly efficient and stable heterogeneous catalyst for industry.
Collapse
|
10
|
Giehr A, Maier L, Angeli S, Schunk SA, Deutschmann O. Dry and Steam Reforming of CH 4 on Co-Hexaaluminate: On the Formation of Metallic Co and Its Influence on Catalyst Activity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Giehr
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Lubow Maier
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Sofia Angeli
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Stephan A. Schunk
- R&D Solutions, hte GmbH, The High Throughput Experimentation Company, Kurpfalzring 104, 69123 Heidelberg, Germany
| | - Olaf Deutschmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Mechanistic Insights for Dry Reforming of Methane on Cu/Ni Bimetallic Catalysts: DFT-Assisted Microkinetic Analysis for Coke Resistance. Catalysts 2020. [DOI: 10.3390/catal10091043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Density functional theory (DFT) calculations have been utilized to evaluate the complete reaction mechanism of methane dry reforming (DRM) over Ni2Cu (111) bimetallic catalyst. The detailed catalytic cycle on Ni2Cu (111) catalyst demonstrated superior coke resistance compared to pure Ni (111) and Ni2Fe (111) reported in the literature. Doping Cu in the Ni–Ni network enhanced the competitive CH oxidation by both atomic O and OH species with the latter having only 0.02 eV higher than the 1.06 eV energy barrier required for CH oxidation by atomic O. Among the C/CH oxidation pathways, C* + O* → CO (g) was the most favorable with an energy barrier of 0.72 eV. This was almost half of the energy barrier required for the rate-limiting step of CH decomposition (1.40 eV) and indicated enhanced coke deposition removal. Finally, we investigated the effect of temperature (800~1000 K) on the carbon deposition and elimination mechanism over Ni2Cu (111) catalyst. Under those realistic DRM conditions, the calculations showed a periodic cycle of simultaneous carbon deposition and elimination resulting in improved catalyst stability.
Collapse
|
12
|
Beheshti Askari A, al Samarai M, Morana B, Tillmann L, Pfänder N, Wandzilak A, Watts B, Belkhou R, Muhler M, DeBeer S. In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catal 2020; 10:6223-6230. [PMID: 32551182 PMCID: PMC7295368 DOI: 10.1021/acscatal.9b05517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023]
Abstract
![]()
Herein,
we report the synthesis of a γ-Al2O3-supported
NiCo catalyst for dry methane reforming (DMR) and
study the catalyst using in situ scanning transmission X-ray microscopy
(STXM) during the reduction (activation step) and under reaction conditions.
During the reduction process, the NiCo alloy particles undergo elemental
segregation with Co migrating toward the center of the catalyst particles
and Ni migrating to the outer surfaces. Under DMR conditions, the
segregated structure is maintained, thus hinting at the importance
of this structure to optimal catalytic functions. Finally, the formation
of Ni-rich branches on the surface of the particles is observed during
DMR, suggesting that the loss of Ni from the outer shell may play
a role in the reduced stability and hence catalyst deactivation. These
findings provide insights into the morphological and electronic structural
changes that occur in a NiCo-based catalyst during DMR. Further, this
study emphasizes the need to study catalysts under operating conditions
in order to elucidate material dynamics during the reaction.
Collapse
Affiliation(s)
- Abbas Beheshti Askari
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Mustafa al Samarai
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Bruno Morana
- NanoInsight, Feldmannweg 17, 2628 CT Delft, The Netherlands
| | - Lukas Tillmann
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Norbert Pfänder
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Aleksandra Wandzilak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme
des Merisiers, Saint-Aubin − BP 48, Gif-sur-Yvette Cedex F-91192, France
| | - Martin Muhler
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
13
|
Millet MM, Tarasov AV, Girgsdies F, Algara-Siller G, Schlögl R, Frei E. Highly Dispersed Ni0/NixMg1–xO Catalysts Derived from Solid Solutions: How Metal and Support Control the CO2 Hydrogenation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Mathilde Millet
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Andrey V. Tarasov
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Frank Girgsdies
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerardo Algara-Siller
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Abteilung Heterogene Reaktionen, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Elias Frei
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Wang H, Duan X, Liu X, Ye G, Gu X, Zhu K, Zhou X, Yuan W. Influence of tubular reactor structure and operating conditions on dry reforming of methane. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Li G, Cheng H, Zhao H, Lu X, Xu Q, Wu C. Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni–Co/MgAl2O4 catalysts. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zuo Z, Liu S, Wang Z, Liu C, Huang W, Huang J, Liu P. Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02277] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhijun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shizhong Liu
- Chemistry Department, State University of New York (SUNY) at Stony Brook, Stony Brook, New York 11794, United States
| | - Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Cheng Liu
- Mechanical Engineering College, Yangzhou University, 196 Huayang West road, Yangzhou, Jiangsu 225127, People’s Republic of China
| | - Wei Huang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
17
|
Das S, Sengupta M, Bag A, Shah M, Bordoloi A. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. NANOSCALE 2018; 10:6409-6425. [PMID: 29561924 DOI: 10.1039/c7nr09625a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A synergistic approach was made to develop a highly stable and carbon resistant catalyst system based on cobalt and nickel supported over modified mesoporous silica for the dry reforming of methane (DRM). Modified mesoporous silica is prepared by a hydrothermal method, and the total Co & Ni composition is taken at around 5% by using the deposition-precipitation technique. CO2 reforming with methane was performed at 400-800 °C under atmospheric pressure as well as at a pressure of 1 MPa, keeping the CH4/CO2 ratio equal to unity. The catalyst assembly before and after the reaction was thoroughly characterized by a wide range of analytical techniques including N2 physisorption, XRD, TPR, TPO, TPH, XPS, SEM, TEM, elemental mapping, TG-DTG. The physicochemical characterization results confirmed the homogeneous distribution of nanosized metal particles into the hexagonal framework of modified silica, which plays a vital role towards a stronger metal support interaction that renders carbon deposition upon the active metal surface as well as avoids metal sintering at higher temperatures. At the same time, the coexistence of nanosized Co and Ni into the mesopores produced a synergy which provides better stability without any deactivation at high pressure reaction conditions. In situ DRIFT analysis evidenced that the reaction proceeds over these catalysts through an initial pathway in which both methane and carbon dioxide initially dissociate over the metal along with a bifunctional pathway in which methane dissociates over the active metal and carbon dioxide activated over the basic support surface via a formate intermediate. Density Functional Theory (DFT) calculations were also performed and further support the proposed mechanism from DRIFT studies.
Collapse
Affiliation(s)
- Subhasis Das
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| | - Manideepa Sengupta
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| | - Arijit Bag
- Chemical Science Division, IISER Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Mumtaj Shah
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, India
| | - Ankur Bordoloi
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| |
Collapse
|
18
|
Park JH, Yeo S, Kang TJ, Shin HR, Heo I, Chang TS. Effect of Zn promoter on catalytic activity and stability of Co/ZrO2 catalyst for dry reforming of CH4. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Bian Z, Das S, Wai MH, Hongmanorom P, Kawi S. A Review on Bimetallic Nickel-Based Catalysts for CO 2 Reforming of Methane. Chemphyschem 2017; 18:3117-3134. [PMID: 28710875 DOI: 10.1002/cphc.201700529] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Indexed: 11/09/2022]
Abstract
In recent years, CO2 reforming of methane (dry reforming of methane, DRM) has become an attractive research area because it converts two major greenhouse gasses into syngas (CO and H2 ), which can be directly used as fuel or feedstock for the chemical industry. Ni-based catalysts have been extensively used for DRM because of its low cost and good activity. A major concern with Ni-based catalysts in DRM is severe carbon deposition leading to catalyst deactivation, and a lot of effort has been put into the design and synthesis of stable Ni catalysts with high carbon resistance. One effective and practical strategy is to introduce a second metal to obtain bimetallic Ni-based catalysts. The synergistic effect between Ni and the second metal has been shown to increase the carbon resistance of the catalyst significantly. In this review, a detailed discussion on the development of bimetallic Ni-based catalysts for DRM including nickel alloyed with noble metals (Pt, Ru, Ir etc.) and transition metals (Co, Fe, Cu) is presented. Special emphasis has been provided on the underlying principles that lead to synergistic effects and enhance catalyst performance. Finally, an outlook is presented for the future development of Ni-based bimetallic catalysts.
Collapse
Affiliation(s)
- Zhoufeng Bian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sonali Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ming Hui Wai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Plaifa Hongmanorom
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
20
|
Amin R, Chang X, Liu B. Synergistic Effect of CeO2 in CH4/CO2 Dry Reforming Reaction over Stable xCeO2 yNi/MCM-22 Catalysts. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roohul Amin
- Department
of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
- The National
Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Xiaoqian Chang
- Department
of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
- The National
Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Bingsi Liu
- Department
of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
- The National
Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| |
Collapse
|
21
|
Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2016.12.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Tomishige K, Li D, Tamura M, Nakagawa Y. Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01300k] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among various methods for preparation of supported Ni–Fe alloy catalysts, reduction of oxides containing both Ni2+ and Fe3+ can give uniform alloy particles with high catalytic performance for reforming of hydrocarbons.
Collapse
Affiliation(s)
- Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Dalin Li
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC)
- School of Chemical Engineering
- Fuzhou University
- Fuzhou 350002
- P. R. China
| | - Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
23
|
Wu H, Liu H, Yang W, He D. Synergetic effect of Ni and Co in Ni–Co/SBA-15-CD catalysts and their catalytic performance in carbon dioxide reforming of methane to syngas. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00202a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|