• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619871)   Today's Articles (5197)   Subscriber (49404)
For: Krajčí M, Tsai AP, Hafner J. Understanding the selectivity of methanol steam reforming on the (1 1 1) surfaces of NiZn, PdZn and PtZn: Insights from DFT. J Catal 2015. [DOI: 10.1016/j.jcat.2015.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Number Cited by Other Article(s)
1
Jiang Y, Huang Y, Guo H, Zhu H, Chen ZX. Comparative simulations of methanol steam reforming on PdZn alloy using kinetic Monte Carlo and mean-field microkinetic model. J Chem Phys 2024;161:024701. [PMID: 38980094 DOI: 10.1063/5.0206139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]  Open
2
Claudio-Piedras A, Ramírez-Zamora RM, Alcántar-Vázquez BC, Gutiérrez-Martínez A, Mondragón-Galicia G, Morales-Anzures F, Pérez-Hernández R. One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: Effect of Pt precursor. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
3
Brix F, Desbuis V, Piccolo L, Gaudry É. Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO2 Hydrogenation to Methanol. J Phys Chem Lett 2020;11:7672-7678. [PMID: 32787294 DOI: 10.1021/acs.jpclett.0c02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
4
Ke C, Lin Z. Catalytic Effect of Hydrogen Bond on Oxhydryl Dehydrogenation in Methanol Steam Reforming on Ni(111). Molecules 2020;25:molecules25071531. [PMID: 32230888 PMCID: PMC7181061 DOI: 10.3390/molecules25071531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]  Open
5
Chen M, Han Y, Goh TW, Sun R, Maligal-Ganesh RV, Pei Y, Tsung CK, Evans JW, Huang W. Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. NANOSCALE 2019;11:5336-5345. [PMID: 30843547 DOI: 10.1039/c8nr10067e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
6
Fan F, Zhao L, Hou H, Zhang Q. Insights into the CO Formation Mechanism during Steam Reforming of Dimethyl Ether over NiO/Cu-Based Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b02628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Wu P, Yang B. Intermetallic PdIn catalyst for CO2 hydrogenation to methanol: mechanistic studies with a combined DFT and microkinetic modeling method. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01242g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
8
Kojima T, Kameoka S, Fujii S, Ueda S, Tsai AP. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: A new potential for old materials. SCIENCE ADVANCES 2018;4:eaat6063. [PMID: 30345356 PMCID: PMC6195335 DOI: 10.1126/sciadv.aat6063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/10/2018] [Indexed: 05/14/2023]
9
Tsai AP, Kameoka S, Nozawa K, Shimoda M, Ishii Y. Intermetallic: A Pseudoelement for Catalysis. Acc Chem Res 2017;50:2879-2885. [PMID: 29219300 DOI: 10.1021/acs.accounts.7b00476] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
10
Furukawa S, Komatsu T. Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02603] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
11
Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. PdZn Intermetallic Nanostructure with Pd–Zn–Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS Catal 2016. [DOI: 10.1021/acscatal.5b01933] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Krajčí M, Hafner J. Intermetallic Compounds as Selective Heterogeneous Catalysts: Insights from DFT. ChemCatChem 2015. [DOI: 10.1002/cctc.201500733] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA