1
|
Xie G, Bai X, Niu Y, Zhang R, Liu J, Yang Q, Wang ZJ. Highly Dispersed AuCu Nanoparticles Confined in Zr-MOFs for Efficient Methanol Synthesis from CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70626-70633. [PMID: 39668768 DOI: 10.1021/acsami.4c18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Making use of novel materials to develop efficient catalysts is one of the research hotspots for CO2 hydrogenation to methanol. Herein, UiO-66, a typical Zr-MOF, was modified by ethylene diamine tetraacetic acid (EDTA) to serve as a substrate for the synthesis of AuCu bimetallic catalysts. The resultant AuCu@UiO-66-EDTA catalyst exhibited a superior methanol production rate, which delivered a high space-time yield of methanol (3.34 gMeOH gmetal-1 h-1) at 250 °C and 3.0 MPa. The EDTA modification was found to effectively confine AuCu nanoparticles inside the framework of MOFs, which significantly reduced the metal particle size and enriched the oxygen vacancy concentration. As a consequence, more active sites were generated for methanol synthesis. Moreover, the AuCu@UiO-66-EDTA catalyst yielded more favorable reaction intermediates that could be converted to methanol at a faster rate. This work develops unique MOFs-encapsulated bimetallic catalysts and illuminates the positive effect of confinement.
Collapse
Affiliation(s)
- Guiming Xie
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyang Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanrui Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhou-Jun Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Patil T, Naji A, Mondal U, Pandey I, Unnarkat A, Dharaskar S. Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44608-44648. [PMID: 38961021 DOI: 10.1007/s11356-024-34139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.
Collapse
Affiliation(s)
- Tushar Patil
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Arkan Naji
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Ujjal Mondal
- Sustainability Centre of Excellence, Larsen & Toubro Technology Services, Vadodara, Gujarat, 382426, India
| | - Indu Pandey
- Larsen & Toubro Technology Services, Larsen & Toubro Tech Park, Byatarayanapura, Bengaluru, Karnataka, 560092, India
| | - Ashish Unnarkat
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Swapnil Dharaskar
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India.
| |
Collapse
|
3
|
Pinheiro Araújo T, Giannakakis G, Morales-Vidal J, Agrachev M, Ruiz-Bernal Z, Preikschas P, Zou T, Krumeich F, Willi PO, Stark WJ, Grass RN, Jeschke G, Mitchell S, López N, Pérez-Ramírez J. Low-nuclearity CuZn ensembles on ZnZrO x catalyze methanol synthesis from CO 2. Nat Commun 2024; 15:3101. [PMID: 38600146 PMCID: PMC11006684 DOI: 10.1038/s41467-024-47447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Zaira Ruiz-Bernal
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Phil Preikschas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Tangsheng Zou
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Patrik O Willi
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Robert N Grass
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
4
|
Ibrahim AO, Wan Daud WMA, Abdul Patah MF, Halilu A, Juan JC, Tanimu G. A microkinetic study of CO 2 hydrogenation to methanol on Pd 1-Cu(111) and Pd 1-Ag(111) catalysts: a DFT analysis. Phys Chem Chem Phys 2024; 26:10622-10632. [PMID: 38506646 DOI: 10.1039/d4cp00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The thermochemical conversion of CO2 into methanol, a process known for its selectivity, often encounters a significant obstacle: the reverse water gas reaction. This problem emerges due to the demanding high temperatures and pressures, causing instability in catalytic performance. Recent endeavours have focused on innovatively designing catalysts capable of withstanding such conditions. Given the costliness of experimental approaches, a theoretical framework has emerged as a promising avenue for addressing the challenges in methanol production. It has been reported that transition metals, especially Pd, provide ideal binding sites for CO2 molecules and hydrogen atoms, facilitating their interactions and subsequent conversion to methanol. In the geometric single-atom form, their surface enables precise control over the reaction pathways and enhances the selectivity towards methanol. In our study, we employed density functional theory (DFT) to explore the conversion of CO2 to CH3OH on Pd1-Cu(111) and Pd1-Ag(111) single-atom alloy (SAA) catalysts. Our investigation involved mapping out the complex reaction pathways of CO2 hydrogenation to CH3OH using microkinetic reaction modelling and mechanisms. We examined three distinct pathways: the COOH* formation pathway, the HCOO* formation pathway, and the dissociation of CO2* to CO* pathway. This comprehensive analysis encompassed the determination of adsorption energies for all reactants, transition states, and resultant products. Additionally, we investigated the thermodynamic and kinetic profiles of individual reaction steps. Our findings emphasised the essential role of the Pd single atom in enhancing the activation of CO2, highlighting the key mechanism underlying this catalytic process. The favoured route for methanol generation on the Pd1-Ag(111) single-atom alloy (SAA) surface unfolds as follows: CO2* progresses through a series of transformations, transitioning successively into HCOO*, HCOOH*, H2COOH*, CH2O*, and CH2OH*, terminating in the formation of CH3OH*, due to lower activation energies and higher rate constants.
Collapse
Affiliation(s)
- Abdulrauf Onimisi Ibrahim
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Ahmadu Bello University, Zaria 810222, Nigeria.
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmed Halilu
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Gazali Tanimu
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Experimental Evaluation of a Coated Foam Catalytic Reactor for the Direct CO2-to-Methanol Synthesis Process. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The era of considering carbon dioxide (CO2) as a waste stream has passed. New methods of utilising CO2 as a carbon feedstock are currently the focus of extensive research efforts. A fixed-bed reactor containing a commercial Cu/ZnO/Al2O3 catalyst washcoated on a Cu foam was used for the synthesis of methanol through direct CO2 hydrogenation. Catalytic activity tests in this reactor were conducted at reaction pressures of 30 and 50 bar, temperatures in the range 190–250 °C, and weight hourly space velocities (WHSV) in the range 1.125–2.925 NL gcat−1 h−1. The best reactor performance was recorded at 50 bar pressure: CO2 conversion and methanol selectivity of 27.46% and 82.97%, respectively, were obtained at 240 °C and 1.125 NL gcat−1 h−1. Increasing the WHSV to 2.925 NL gcat−1 h−1 resulted in a twofold increase in methanol weight time yield (WTY) to 0.18 gMeOH gcat−1 h−1 and a decrease in methanol selectivity to 70.55%. The results presented in this investigation provide insight into the performance of a bench-scale reactor in which mass transfer limitations are non-negligible and demonstrate that metal foams are promising catalyst support structures for CO2 hydrogenation towards methanol production.
Collapse
|
6
|
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The increasing concentration of anthropogenic CO2 in the air is one of the main causes of global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas emissions in the second half of this century, with CO2 conversion towards valuable added compounds being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive description and analysis of the relevant literature on the utilization of metal-supported NPs as catalysts for CO2 conversion to useful chemicals and propose that the next catalysts generation can be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of NPs’ size, the strong metal–support interactions, and the formation of vacancies on the support are exhaustively discussed from experimental and computational perspective.
Collapse
|
7
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
8
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
9
|
Co-Production of Methanol and Methyl Formate via Catalytic Hydrogenation of CO2 over Promoted Cu/ZnO Catalyst Supported on Al2O3 and SBA-15. Catalysts 2022. [DOI: 10.3390/catal12091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cu/ZnO catalysts promoted with Mn, Nb and Zr, in a 1:1:1 ration, and supported on Al2O3 (CZMNZA) and SBA-15 (CZMNZS) were synthesized using an impregnation method. The catalytic performance of methanol synthesis from CO2 hydrogenation was investigated in a fixed-bed reactor at 250 °C, 22.5 bar, GHSV 10,800 mL/g·h and H2/CO2 ratio of 3. The CZMNZA catalyst resulted in higher CO2 conversion and MeOH selectivity of 7.22% and 32.10%, respectively, despite having a lower BET surface area and pore volume compared to CZMNZS. Methyl formate is the major product obtained over both types of catalysts. The CZMNZA is a promising catalyst for co-producing methanol and methyl formate via the CO2 hydrogenation reaction.
Collapse
|
10
|
Wang J, Liu H, Wang T, Xi Y, Sun P, Li F. Boosting CO2 hydrogenation to methanol via Cu-Zn synergy over highly dispersed Cu,Zn-codoped ZrO2 catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Combined experimental and computational study to unravel the factors of the Cu/TiO2 catalyst for CO2 hydrogenation to methanol. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Sharma SK, Paul B, Bhanja P, Poddar MK, Samanta C, Khan TS, Haider MA, Bal R. Understanding the Origin of Structure Sensitivity in Nano Crystalline Mixed Cu/Mg−Al Oxides Catalyst for Low‐Pressure Methanol Synthesis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sachin Kumar Sharma
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Bappi Paul
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Department of Chemistry National Institute of Technology Nagaland Dimapur, Nagaland 797103 India
| | - Piyali Bhanja
- PCSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
| | - Mukesh Kumar Poddar
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - Chanchal Samanta
- Bharat Petroleum Corporation Ltd. Greater Noida Uttar Pradesh 201306 India
| | - Tuhin Suvra Khan
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - M. Ali Haider
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016 India
| | - Rajaram Bal
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
13
|
Halder A, Lenardi C, Timoshenko J, Mravak A, Yang B, Kolipaka LK, Piazzoni C, Seifert S, Bonačić-Koutecký V, Frenkel AI, Milani P, Vajda S. CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Avik Halder
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Cristina Lenardi
- C.I. Ma.I.Na., Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - Janis Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794 United States
| | - Antonija Mravak
- Center of Excellence for Science and Technology - Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, CR-21000 Split, Croatia
| | - Bing Yang
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Lakshmi K Kolipaka
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Claudio Piazzoni
- C.I. Ma.I.Na., Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - Sönke Seifert
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology - Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, CR-21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, CR-21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794 United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Paolo Milani
- C.I. Ma.I.Na., Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - Stefan Vajda
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-18223 Prague 8, Czech Republic
| |
Collapse
|
14
|
Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM. Flame Synthesis of Cu/ZnO-CeO 2 Catalysts: Synergistic Metal-Support Interactions Promote CH 3OH Selectivity in CO 2 Hydrogenation. ACS Catal 2021; 11:4880-4892. [PMID: 33898079 PMCID: PMC8057230 DOI: 10.1021/acscatal.1c00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Indexed: 11/28/2022]
Abstract
![]()
The hydrogenation
of CO2 to CH3OH is an important
reaction for future renewable energy scenarios. Herein, we compare
Cu/ZnO, Cu/CeO2, and Cu/ZnO–CeO2 catalysts
prepared by flame spray pyrolysis. The Cu loading and support composition
were varied to understand the role of Cu–ZnO and Cu–CeO2 interactions. CeO2 addition improves Cu dispersion
with respect to ZnO, owing to stronger Cu–CeO2 interactions.
The ternary Cu/ZnO–CeO2 catalysts displayed a substantially
higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison
with a commercial Cu–ZnO catalyst is also confirmed for Cu/ZnO–CeO2 catalyst prepared with high Cu loading (∼40 wt %).
In situ IR spectroscopy was used to probe metal–support interactions
in the reduced catalysts and to gain insight into CO2 hydrogenation
over the Cu–Zn–Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu–CeO2 and Cu–ZnO interactions. Cu–ZnO interactions
promote CO2 hydrogenation to CH3OH by Zn-decorated
Cu active sites. Cu–CeO2 interactions inhibit the
reverse water–gas shift reaction due to a high formate coverage
of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning
metal–support interactions to develop improved Cu-based catalysts
for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Diana Ciolca
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Liang Liu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Ray D, Chawdhury P, Bhargavi K, Thatikonda S, Lingaiah N, Subrahmanyam C. Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Tripathi K, Singh R, Pant KK. Tailoring the Physicochemical Properties of Mg Promoted Catalysts via One Pot Non-ionic Surfactant Assisted Co-precipitation Route for CO2 Co-feeding Syngas to Methanol. Top Catal 2021. [DOI: 10.1007/s11244-020-01410-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Ding J, Wang M, Liu H, Wang Z, Guo X, Yu G, Wang Y. Influence of La-doping on the CuO/ZrO 2 catalysts with different Cu contents for hydrogenation of dimethyl oxalate to ethylene glycol. NEW J CHEM 2021. [DOI: 10.1039/d1nj01720a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of La2O3 into CuO/ZrO2 affects both the distribution of Cu species and the crystal growth of zirconia, hence increasing DMO conversion.
Collapse
Affiliation(s)
- Jian Ding
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Cooperative Innovation Center for Green Coal Mining & Green Utilization, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive Utilization, Baotou 014010, Inner Mongolia, P. R. China
| | - Meihui Wang
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
| | - Huimin Liu
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
| | - Zhenfeng Wang
- School of Materials and Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
| | - Xiaohui Guo
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
| | - Gewen Yu
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Cooperative Innovation Center for Green Coal Mining & Green Utilization, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive Utilization, Baotou 014010, Inner Mongolia, P. R. China
| | - Yaxiong Wang
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Cooperative Innovation Center for Green Coal Mining & Green Utilization, Baotou 014010, Inner Mongolia, P. R. China
- Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive Utilization, Baotou 014010, Inner Mongolia, P. R. China
| |
Collapse
|
18
|
Tada S, Otsuka F, Fujiwara K, Moularas C, Deligiannakis Y, Kinoshita Y, Uchida S, Honma T, Nishijima M, Kikuchi R. Development of CO2-to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in Spinel-Type Oxide Mg1–xCuxAl2O4. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shohei Tada
- Department of Materials Sciences and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi-shi, Ibaraki 316-8511, Japan
| | - Fumito Otsuka
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kakeru Fujiwara
- Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-6 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan
| | - Constantinos Moularas
- Department of Physics, University of Ioannina, GR-451 10, Panepistimioupoli, Ioannina 45110, Greece
| | - Yiannis Deligiannakis
- Department of Physics, University of Ioannina, GR-451 10, Panepistimioupoli, Ioannina 45110, Greece
| | - Yuki Kinoshita
- Department of Basic Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sayaka Uchida
- Department of Basic Sciences, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Masahiko Nishijima
- The Electron Microscopy Center, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Miyagi 980-8577, Japan
| | - Ryuji Kikuchi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Sha F, Han Z, Tang S, Wang J, Li C. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. CHEMSUSCHEM 2020; 13:6160-6181. [PMID: 33146940 DOI: 10.1002/cssc.202002054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The increasing atmospheric CO2 level makes CO2 reduction an urgent challenge facing the world. Catalytic transformation of CO2 into chemicals and fuels utilizing renewable energy is one of the promising approaches toward alleviating CO2 emissions. In particular, the selective hydrogenation of CO2 to methanol utilizing renewable hydrogen potentially enables large scale transformation of CO2 . The Cu-based catalysts have been extensively investigated in CO2 hydrogenation. However, it is not only limited by long-term instability but also displays unsatisfactory catalytic performance. The supported metal-based catalysts (Pd, Pt, Au, and Ag) can achieve high methanol selectivity at low temperatures. The mixed oxide catalysts represented by Ma ZrOx (Ma =Zn, Ga, and Cd) solid solution catalysts present high methanol selectivity and catalytic activity as well as excellent stability. This Review focuses on the recent advances in developing Non-Cu-based heterogeneous catalysts and current understandings of catalyst design and catalytic performance. First, the thermodynamics of CO2 hydrogenation to methanol is discussed. Then, the progress in supported metal-based catalysts, bimetallic alloys or intermetallic compounds catalysts, and mixed oxide catalysts is discussed. Finally, a summary and a perspective are presented.
Collapse
Affiliation(s)
- Feng Sha
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhe Han
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Shan Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jijie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
20
|
|
21
|
Pustovarenko A, Dikhtiarenko A, Bavykina A, Gevers L, Ramírez A, Russkikh A, Telalovic S, Aguilar A, Hazemann JL, Ould-Chikh S, Gascon J. Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO2 to Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00449] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexey Pustovarenko
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alla Dikhtiarenko
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Anastasiya Bavykina
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lieven Gevers
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramírez
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Artem Russkikh
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Selvedin Telalovic
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Antonio Aguilar
- Néel, UPR2940 CNRS, University of Grenoble Alpes, Grenoble F-38000, France
| | | | - Samy Ould-Chikh
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- Advanced Catalytic Materials, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
22
|
Ye RP, Lin L, Wang LC, Ding D, Zhou Z, Pan P, Xu Z, Liu J, Adidharma H, Radosz M, Fan M, Yao YG. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05477] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Run-Ping Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Ling Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Lu-Cun Wang
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Pengbin Pan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, U.K
| | - Hertanto Adidharma
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maciej Radosz
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maohong Fan
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason
Building, 790 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
23
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
24
|
Copper–Zirconia Catalysts: Powerful Multifunctional Catalytic Tools to Approach Sustainable Processes. Catalysts 2020. [DOI: 10.3390/catal10020168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper–zirconia catalysts find many applications in different reactions owing to their unique surface properties and relatively easy manufacture. The so-called methanol economy, which includes the CO2 and CO valorization and the hydrogen production, and the emerging (bio)alcohol upgrading via dehydrogenative coupling reaction, are two critical fields for a truly sustainable development in which copper–zirconia has a relevant role. In this review, we provide a systematic view on the factors most impacting the catalytic activity and try to clarify some of the discrepancies that can be found in the literature. We will show that contrarily to the large number of studies focusing on the zirconia crystallographic phase, in the last years, it has turned out that the degree of surface hydroxylation and the copper–zirconia interphase are in fact the two mostly determining factors to be controlled to achieve high catalytic performances.
Collapse
|
25
|
Sripada P, Kimpton J, Barlow A, Williams T, Kandasamy S, Bhattacharya S. Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 2020; 49:1385-1413. [DOI: 10.1039/c9cs00614a] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts, the heterogeneous catalysis of CO2 hydrogenation to methanol is of great significance.
Collapse
Affiliation(s)
- Jiawei Zhong
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiaofeng Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhilian Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Binglian Liang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
27
|
Hu F, Tong S, Lu K, Chen CM, Su FY, Zhou J, Lu ZH, Wang X, Feng G, Zhang R. Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.08.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro J, Navarro RM. Methanol Synthesis from CO 2: A Review of the Latest Developments in Heterogeneous Catalysis. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3902. [PMID: 31779127 PMCID: PMC6926878 DOI: 10.3390/ma12233902] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Technological approaches which enable the effective utilization of CO2 for manufacturing value-added chemicals and fuels can help to solve environmental problems derived from large CO2 emissions associated with the use of fossil fuels. One of the most interesting products that can be synthesized from CO2 is methanol, since it is an industrial commodity used in several chemical products and also an efficient transportation fuel. In this review, we highlight the recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to methanol. The main efforts focused on the improvement of conventional Cu/ZnO based catalysts and the development of new catalytic systems targeting the specific needs for CO2 to methanol reactions (unfavourable thermodynamics, production of high amount of water and high methanol selectivity under high or full CO2 conversion). Major studies on the development of active and selective catalysts based on thermodynamics, mechanisms, nano-synthesis and catalyst design (active phase, promoters, supports, etc.) are highlighted in this review. Finally, a summary concerning future perspectives on the research and development of efficient heterogeneous catalysts for methanol synthesis from CO2 will be presented.
Collapse
Affiliation(s)
- R. Guil-López
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (N.M.); (J.L.); (E.M.); (B.P.); (J.L.G.F.)
| | | | | | | | | | | | - R. M. Navarro
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (N.M.); (J.L.); (E.M.); (B.P.); (J.L.G.F.)
| |
Collapse
|
29
|
Lam E, Larmier K, Tada S, Wolf P, Safonova OV, Copéret C. Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63348-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Tada S, Oshima K, Noda Y, Kikuchi R, Sohmiya M, Honma T, Satokawa S. Effects of Cu Precursor Types on the Catalytic Activity of Cu/ZrO2 toward Methanol Synthesis via CO2 Hydrogenation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shohei Tada
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazumasa Oshima
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Yoshihiro Noda
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Ryuji Kikuchi
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Sohmiya
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| |
Collapse
|
31
|
Fujiwara K, Tada S, Honma T, Sasaki H, Nishijima M, Kikuchi R. Influences of particle size and crystallinity of highly loaded CuO/ZrO
2
on CO
2
hydrogenation to methanol. AIChE J 2019. [DOI: 10.1002/aic.16717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kakeru Fujiwara
- Department of Chemistry and Chemical EngineeringYamagata University Yonezawa Yamagata Japan
| | - Shohei Tada
- Department of Chemical System Engineering, Graduate School of EngineeringThe University of Tokyo Tokyo Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute Sayo‐cho Hyogo Japan
| | - Hiro Sasaki
- Department of Chemistry and Chemical EngineeringYamagata University Yonezawa Yamagata Japan
| | | | - Ryuji Kikuchi
- Department of Chemical System Engineering, Graduate School of EngineeringThe University of Tokyo Tokyo Japan
| |
Collapse
|
32
|
Li K, Chen JG. CO2 Hydrogenation to Methanol over ZrO2-Containing Catalysts: Insights into ZrO2 Induced Synergy. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01943] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kongzhai Li
- State Key Laboratory
of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
33
|
Yao L, Shen X, Pan Y, Peng Z. Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Promotion effect of Bi species in Cu/Bi/MCM-41 catalysts for 1,4-butynediol synthesis by ethynylation of formaldehyde. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01561-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
The Support Effects on the Direct Conversion of Syngas to Higher Alcohol Synthesis over Copper-Based Catalysts. Catalysts 2019. [DOI: 10.3390/catal9020199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The types of supports employed profoundly influence the physicochemical properties and performances of as-prepared catalysts in almost all catalytic systems. Herein, Cu catalysts, with different supports (SiO2, Al2O3), were prepared by a facile impregnation method and used for the direct synthesis of higher alcohols from CO hydrogenation. The prepared catalysts were characterized using multiple techniques, such as X-ray diffraction (XRD), N2 sorption, H2-temperature-programmed reduction (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), X-ray photoelectron spectroscopy (XPS) and in situ Fourier-transform infrared spectroscopy (FTIR), etc. Compared to the Cu/Al2O3 catalyst, the Cu/SiO2 catalyst easily promoted the formation of a higher amount of C1 oxygenate species on the surface, which is closely related to the formation of higher alcohols. Simultaneously, the Cu/Al2O3 and Cu/SiO2 catalysts showed obvious differences in the CO conversion, alcohol distribution, and CO2 selectivity, which were probably originated from differences in the structural and physicochemical properties, such as the types of copper species, the reduction behaviors, acidity, and electronic properties. Besides, it was also found that the gap in performances in two kinds of catalysts with the different supports could be narrowed by the addition of potassium because of its neutralization to surface acidy of Al2O3 and the creation of new basic sites, as well as the alteration of electronic properties.
Collapse
|
36
|
Ma Q, Geng M, Zhang J, Zhang X, Zhao TS. Enhanced Catalytic Performance for CO2
Hydrogenation to Methanol over N-doped Graphene Incorporated Cu-ZnO-Al2
O3
Catalysts. ChemistrySelect 2019. [DOI: 10.1002/slct.201803186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingxiang Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University, Yinchuan; P. R. China. 750021
| | - Mengqian Geng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University, Yinchuan; P. R. China. 750021
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University, Yinchuan; P. R. China. 750021
| | - Xiangling Zhang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University, Yinchuan; P. R. China. 750021
| | - Tian-Sheng Zhao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University, Yinchuan; P. R. China. 750021
| |
Collapse
|
37
|
Zhang X, Wang H, Jiang X, Sun H, Qu Z. Study of synergistic effect between CuO and CeO2 over CuO@CeO2 core–shell nanocomposites for NH3-SCO. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00480g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CuO@CeO2 core–shell nanocomposites were fabricated and applied in NH3-SCO. Synergistic effect of CuO–CeO2 promotes the formation of the Cu–O–Ce structure, which is beneficial to N2 selectivity.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Hui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Xiao Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Hongchun Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian
- China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
38
|
Sustainable production of methanol from CO2 over 10Cu-10Fe/ZSM-5 catalyst in a magnetic field-assisted packed bed reactor. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Lam E, Larmier K, Wolf P, Tada S, Safonova OV, Copéret C. Isolated Zr Surface Sites on Silica Promote Hydrogenation of CO 2 to CH 3OH in Supported Cu Catalysts. J Am Chem Soc 2018; 140:10530-10535. [PMID: 30028948 DOI: 10.1021/jacs.8b05595] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper nanoparticles supported on zirconia (Cu/ZrO2) or related supported oxides (Cu/ZrO2/SiO2) show promising activity and selectivity for the hydrogenation of CO2 to CH3OH. However, the role of the support remains controversial because most spectroscopic techniques provide information dominated by the bulk, making interpretation and formulation of structure-activity relationships challenging. In order to understand the role of the support and in particular of the Zr surface species at a molecular level, a surface organometallic chemistry approach has been used to tailor a silica support containing isolated Zr(IV) surface sites, on which copper nanoparticles (∼3 nm) are generated. These supported Cu nanoparticles exhibit increased CH3OH activity and selectivity compared to those supported on SiO2, reaching catalytic performances comparable to those of the corresponding Cu/ZrO2. Ex situ and in situ X-ray absorption spectroscopy reveals that the Zr sites on silica remain isolated and in their +4 oxidation state, while ex situ solid-state nuclear magnetic resonance spectroscopy and catalytic performances show that similar mechanisms are involved with the single-site support and ZrO2. These observations imply that Zr(IV) surface sites at the periphery of Cu particles are responsible for promoting CH3OH formation on Cu-Zr-based catalysts and provide a guideline to develop selective CH3OH synthesis catalysts.
Collapse
Affiliation(s)
- Erwin Lam
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Kim Larmier
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Patrick Wolf
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Shohei Tada
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| | | | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir Prelog Weg 1-5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
40
|
Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. J Catal 2018. [DOI: 10.1016/j.jcat.2018.06.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Tada S, Kayamori S, Honma T, Kamei H, Nariyuki A, Kon K, Toyao T, Shimizu KI, Satokawa S. Design of Interfacial Sites between Cu and Amorphous ZrO2 Dedicated to CO2-to-Methanol Hydrogenation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01396] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shohei Tada
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Shingo Kayamori
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiromu Kamei
- Nikki-Universal Co., Ltd., 7-14-1 Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Akane Nariyuki
- Nikki-Universal Co., Ltd., 7-14-1 Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Kenichi Kon
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
- Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8520, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, Kita21-Nishi10,
Kita-ku, Sapporo-shi, Hokkaido 001-0021, Japan
- Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8520, Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| |
Collapse
|
42
|
|
43
|
Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane. J Colloid Interface Sci 2018; 513:287-294. [DOI: 10.1016/j.jcis.2017.11.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022]
|
44
|
Tada S, Larmier K, Büchel R, Copéret C. Methanol synthesis via CO2 hydrogenation over CuO–ZrO2 prepared by two-nozzle flame spray pyrolysis. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00250a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled CuO–ZrO2 particle synthesis by tuning the flame spray pyrolysis conditions allow generating highly active and methanol selective CO2 hydrogenation catalysts.
Collapse
Affiliation(s)
- Shohei Tada
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| | - Kim Larmier
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| | - Robert Büchel
- Particle Technology Laboratory
- Department of Mechanical and Process Engineering
- ETH Zürich
- CH-8092 Zürich
- Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
45
|
Hydrogen Utilization in Green Fuel Synthesis via CO2 Conversion to Methanol over New Cu-Based Catalysts. CHEMENGINEERING 2017. [DOI: 10.3390/chemengineering1020019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst. Catalysts 2017. [DOI: 10.3390/catal7110332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
47
|
Influence of reduction time of catalyst on methanol synthesis via CO 2 hydrogenation using Cu–Zn/N-rGO investigated by in situ XANES. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Shimoda N, Nakayama K, Kiyota K, Satokawa S. Synthesis of tetragonal zirconia in mesoporous silica and its catalytic properties for methanol oxidative decomposition. RSC Adv 2017. [DOI: 10.1039/c7ra10942c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nano-sized tetragonal ZrO2 with large surface area can be synthesized by the hard template method using meso-porous silica KIT-6.
Collapse
Affiliation(s)
- Naohiro Shimoda
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino-shi
- Japan
| | - Kyoko Nakayama
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino-shi
- Japan
| | - Keiko Kiyota
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino-shi
- Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino-shi
- Japan
| |
Collapse
|