1
|
Liu P, Sivakov V. Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2391. [PMID: 37686899 PMCID: PMC10490065 DOI: 10.3390/nano13172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
For a very long period, tin was considered one of the most important metals for humans due to its easy access in nature and abundance of sources. In the past, tin was mainly used to make various utensils and weapons. Today, nanostructured tin and especially its oxide materials have been found to possess many characteristic physical and chemical properties that allow their use as functional materials in various fields such as energy storage, photocatalytic process, gas sensors, and solar cells. This review discusses current methods for the synthesis of Sn/SnO2 composite materials in form of powder or thin film, as well as the application of the most advanced characterization tools based on large-scale synchrotron radiation facilities to study their chemical composition and electronic features. In addition, the applications of Sn/SnO2 composites in various fields are presented in detail.
Collapse
Affiliation(s)
- Poting Liu
- Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany;
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Vladimir Sivakov
- Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany;
| |
Collapse
|
2
|
Werghi B, Wu L, Ebrahim AM, Chi M, Ni H, Cargnello M, Bare SR. Selective Catalytic Behavior Induced by Crystal-Phase Transformation in Well-Defined Bimetallic Pt-Sn Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207956. [PMID: 36807838 DOI: 10.1002/smll.202207956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The Pt-Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt-Sn phase. Colloidal chemistry offers a route for the synthesis of Pt-Sn bimetallic nanoparticles (NPs) in a systematic, well-defined, tailored fashion over conventional methods. Here, the successful synthesis of well-defined ≈2 nm Pt, PtSn, and Pt3 Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3 Sn show different activity and stability depending on the hydrogen-rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3 Sn/Al2 O3 , which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12 -ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3 Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure-performance relationship on emerging bimetallic systems.
Collapse
Affiliation(s)
- Baraa Werghi
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Liheng Wu
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani M Ebrahim
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Haoyang Ni
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
3
|
Effect of Tin Content on TiO2-Supported Platinum-Tin Bimetallic Catalysts for Low Temperature CO Oxidation Reaction. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Arrahli A, Kherbeche A, Derrouiche S, Bianchi D. Heats of adsorption of linear CO species on the Pt sites of a 1.2% Pt-2.7% Sn/Al2O3 catalyst before and after reconstruction and ageing processes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Liu L, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P, Calvino JJ, Corma A. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Saito H, Sekine Y. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization. RSC Adv 2020; 10:21427-21453. [PMID: 35518732 PMCID: PMC9054567 DOI: 10.1039/d0ra03365k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical utilization of ethane to produce valuable chemicals has become especially attractive since the expanded utilization of shale gas in the United States and associated petroleum gas in the Middle East. Catalytic conversion to ethylene and aromatic hydrocarbons through non-oxidative dehydrogenation and dehydroaromatization of ethane (EDH and EDA) are potentially beneficial technologies because of their high selectivity to products. The former represents an attractive alternative to conventional thermal cracking of ethane. The latter can produce valuable aromatic hydrocarbons from a cheap feedstock. Nevertheless, further progress in catalytic science and technology is indispensable to implement these processes beneficially. This review summarizes progress that has been achieved with non-oxidative EDH and EDA in terms of the nature of active sites and reaction mechanisms. Briefly, platinum-, chromium- and gallium-based catalysts have been introduced mainly for EDH, including effects of carbon dioxide co-feeding. Efforts to use EDA have emphasized zinc-modified MFI zeolite catalysts. Finally, some avenues for development of catalytic science and technology for ethane conversion are summarized.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki Aichi 444-8585 Japan +81 564 55 7287
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
10
|
The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5 wt.% NaCl Solution. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, the corrosion mechanism of a Cu-5Zn-5Al-1Sn alloy was examined in a 3.5 wt.% NaCl solution. At the same time, the effect of a cysteine inhibitor was also investigated through a multi-analytical approach. Electrochemical results suggested that inhibition efficiency increased with the increase of cysteine concentration. From potentiodynamic polarization (PD) analysis, a decrease in corrosion current and corrosion potential shift toward a more negative direction was observed. The potential difference between the blank and inhibited surface was found to be 46 mV, which is less than 85 mV, revealing a mixed type inhibition effect of cysteine for the Cu-5Zn-5Al-1Sn alloy. The inhibition mechanism of cysteine (Cys) and the effect of alloying elements were investigated by fitting experimental impedance data according to a projected equivalent circuit for the alloy/electrolyte interface. A Langmuir adsorption isotherm was proposed to explain the inhibition phenomenon of cysteine on the Cu-5Zn-5Al-1Sn alloy surface. Surface morphology observation confirmed that the Cu-5Zn-5Al-1Sn alloy was damaged in 3.5 wt.% NaCl solution and could be inhibited by using the cysteine inhibitor. The impact of alloying elements on the corrosion mechanism was further examined by surface analysis techniques such as X-Ray photoelectron spectroscopy (XPS)/Auger spectra, the results of which indicated that the corrosion inhibition was realized by the adsorption of the inhibitor molecules at the alloy/solution interface.
Collapse
|
11
|
Abstract
Density functional theory calculations are used to investigate CO adsorption, dissociation and SnOX formation on Pt3Sn.
Collapse
Affiliation(s)
- Matthias Vandichel
- Department of Physics and Competence Centre for Catalysis
- Chalmers University of Technology
- 412 96 Göteborg
- Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis
- Chalmers University of Technology
- 412 96 Göteborg
- Sweden
| |
Collapse
|