1
|
Ibrahim AO, Wan Daud WMA, Abdul Patah MF, Halilu A, Juan JC, Tanimu G. A microkinetic study of CO 2 hydrogenation to methanol on Pd 1-Cu(111) and Pd 1-Ag(111) catalysts: a DFT analysis. Phys Chem Chem Phys 2024; 26:10622-10632. [PMID: 38506646 DOI: 10.1039/d4cp00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The thermochemical conversion of CO2 into methanol, a process known for its selectivity, often encounters a significant obstacle: the reverse water gas reaction. This problem emerges due to the demanding high temperatures and pressures, causing instability in catalytic performance. Recent endeavours have focused on innovatively designing catalysts capable of withstanding such conditions. Given the costliness of experimental approaches, a theoretical framework has emerged as a promising avenue for addressing the challenges in methanol production. It has been reported that transition metals, especially Pd, provide ideal binding sites for CO2 molecules and hydrogen atoms, facilitating their interactions and subsequent conversion to methanol. In the geometric single-atom form, their surface enables precise control over the reaction pathways and enhances the selectivity towards methanol. In our study, we employed density functional theory (DFT) to explore the conversion of CO2 to CH3OH on Pd1-Cu(111) and Pd1-Ag(111) single-atom alloy (SAA) catalysts. Our investigation involved mapping out the complex reaction pathways of CO2 hydrogenation to CH3OH using microkinetic reaction modelling and mechanisms. We examined three distinct pathways: the COOH* formation pathway, the HCOO* formation pathway, and the dissociation of CO2* to CO* pathway. This comprehensive analysis encompassed the determination of adsorption energies for all reactants, transition states, and resultant products. Additionally, we investigated the thermodynamic and kinetic profiles of individual reaction steps. Our findings emphasised the essential role of the Pd single atom in enhancing the activation of CO2, highlighting the key mechanism underlying this catalytic process. The favoured route for methanol generation on the Pd1-Ag(111) single-atom alloy (SAA) surface unfolds as follows: CO2* progresses through a series of transformations, transitioning successively into HCOO*, HCOOH*, H2COOH*, CH2O*, and CH2OH*, terminating in the formation of CH3OH*, due to lower activation energies and higher rate constants.
Collapse
Affiliation(s)
- Abdulrauf Onimisi Ibrahim
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Ahmadu Bello University, Zaria 810222, Nigeria.
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmed Halilu
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Gazali Tanimu
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Xia L, Jian Y, Liu Q, Liu Y, Wang J, Chai S, Jing M, Albilali R, He C. Boosted Light Alkane Deep Oxidation via Metal Bond Length Modulation-Induced C-C Bond Preferential Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319875 DOI: 10.1021/acs.est.3c06916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Light alkanes (LAs), typical VOCs existing in both stationary and mobile sources, pose significant environmental concerns. Although noble metal catalysts demonstrate strong C-H bond activation, their effectiveness in degrading LAs is hindered by inherent challenges, including poor chemical stability and water resistance. Here, from a new perspective, we propose a feasible strategy that adjusting the metal bond lengths within Pd clusters through partial substitution of smaller radius 3d transition metals (3dTMs) to prioritize the activation of low-energy C-C bonds within LAs. Benefiting from this, PdCo/CeO2 exhibits exceptional catalytic performance in propane degradation due to their high capacity for C-C cleavage stemming from the shorter Pd-Co length (2.51 Å) and lower coordination number (1.73), boosting the activation of α-H and β-H of propane simultaneously and accelerating the mobility of postactivated oxygen species to prevent Pd center deep oxidation. The presence of 3dTMs on Pd clusters improves the redox and charge transfer ability of catalysts, resulting in an amplified generation of oxygen vacancies and facilitating the adsorption and activation of reactants. Mechanistic studies and DFT calculations suggest that the substitution of 3dTMs significantly accelerate C-C bond cleavage within C3 intermediates to generate the subsequent C2 and C1 intermediates, suppressing the generation of harmful byproducts.
Collapse
Affiliation(s)
- Lianghui Xia
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Qiyuan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Yujie Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Jingjing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
| | - Meizan Jing
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
3
|
Soleimani M, Pourfath M. A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO 2 conversion to chemicals. NANOSCALE 2023; 15:7051-7067. [PMID: 36974912 DOI: 10.1039/d3nr00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between plasmonic gold (Au) nanoparticles and the adsorbate is essential for photocatalytic and plasmonic applications. However, it is often challenging to identify a specific reaction mechanism in the ground state and to explore the optical properties in the excited states because of the complicated pathways of carriers. In this study, photocatalytic reduction of carbon dioxide (CO2) to C1 products (for example, CO and CH4) on the Au(111) nanoparticle (NP) surface was studied based on reaction pathway analysis, adsorbate reactivity, and its ability to stabilize or deactivate the surface. The calculated reaction Gibbs free energies and activation barriers revealed that the first step in CO reduction via a direct hydrogen transfer mechanism on Au(111) is the formation of formyl (*CHO) instead of hydroxymethylidyne (*COH). Furthermore, the size enhanced and symmetry sensitive optical responses of cuboctahedral Au(111) NPs on localized surface plasmon resonance (LSPR) were investigated by using time-dependent DFT (TDDFT) calculations. Although near field enhancement around cuboctahedral Au(111) NPs is only weakly dependent on the morphology of NPs, it was observed that corner sites stabilize *C-species to drive the CO2 reduction to CO. The density of active surface states interacting with the adsorbate states near the Fermi level gradually decreases from the (111) on-top site toward the corner site of the Au(111) NP-CO system, which strongly affects the molecule's binding on catalytic sites and, in particular, electronic excitation. Finally, the spatial distribution of the charge oscillations was determined as a guide for the fabrication of Au NPs with an optimal LSPR response.
Collapse
Affiliation(s)
- Maryam Soleimani
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
- Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
4
|
Thurner CW, Bonmassar N, Winkler D, Haug L, Ploner K, Delir Kheyrollahi Nezhad P, Drexler X, Mohammadi A, van Aken PA, Kunze-Liebhäuser J, Niaei A, Bernardi J, Klötzer B, Penner S. Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. ACS Catal 2022; 12:7696-7708. [PMID: 35799767 PMCID: PMC9251726 DOI: 10.1021/acscatal.2c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Indexed: 11/28/2022]
Abstract
![]()
Following the need
for an innovative catalyst and material design
in catalysis, we provide a comparative approach using pure and Pd-doped
LaCuxMn1–xO3 (x = 0.3 and 0.5) perovskite
catalysts to elucidate the beneficial role of the Cu/perovskite and
the promoting effect of CuyPdx/perovskite interfaces developing in situ under model NO + CO reaction conditions. The observed bifunctional
synergism in terms of activity and N2 selectivity is essentially
attributed to an oxygen-deficient perovskite interface, which provides
efficient NO activation sites in contact with in situ exsolved surface-bound monometallic Cu and bimetallic CuPd nanoparticles.
The latter promotes the decomposition of the intermediate N2O at low temperatures, enhancing the selectivity toward N2. We show that the intelligent Cu/perovskite interfacial design is
the prerequisite to effectively replace noble metals by catalytically
equally potent metal–mixed-oxide interfaces. We have provided
the proof of principle for the NO + CO test reaction but anticipate
the extension to a universal concept applicable to similar materials
and reactions.
Collapse
Affiliation(s)
- Christoph W. Thurner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Nicolas Bonmassar
- Max Plank Institute for Solid State Research, Heisenbergstaße 1, D-70569 Stuttgart, Germany
| | - Daniel Winkler
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Leander Haug
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Kevin Ploner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Parastoo Delir Kheyrollahi Nezhad
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Xaver Drexler
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Asghar Mohammadi
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Peter A. van Aken
- Max Plank Institute for Solid State Research, Heisenbergstaße 1, D-70569 Stuttgart, Germany
| | - Julia Kunze-Liebhäuser
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Aligholi Niaei
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Johannes Bernardi
- University Service Centre for Transmission Electron Microscopy (USTEM), Technische Universität Wien, Wiedner Hauptstraße 8-10/057-02, A-1040 Wien, Austria
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Yin J, Ehara M, Sakaki S. Single atom alloys vs. phase separated alloys in Cu, Ag, and Au atoms with Ni(111) and Ni, Pd, and Pt atoms with Cu(111): a theoretical exploration. Phys Chem Chem Phys 2022; 24:10420-10438. [PMID: 35441637 DOI: 10.1039/d2cp00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-atom alloy (SAA) consisting of an abundant metal host and a precious metal guest is a promising catalyst to reduce the cost without a loss of activity. DFT calculations of Ni- and Cu-based alloys nX/M(111) (X = Cu, Ag, or Au for M = Ni; X = Ni, Pd, or Pt for M = Cu; n = 1-4) reveal that a phase-separated alloy (PSA) is produced by Cu atoms with Ni(111) but an SAA is produced by Au atoms with Ni(111) and Pd and Pt atoms with Cu(111). In the Ni(111)-based Ag alloy and Cu(111)-based Ni alloy, the relative stabilities of the SAA and PSA depend on coverages of Ag on Ni(111) and Ni on Cu(111). The interaction energy (Eint) between the Xn cluster and M(111) host is larger than that between one X atom and the M(111) host, because the Xn cluster forms more bonding interactions with the M(111) host than does one X atom. When going from one X atom to the X4 cluster, the Eint values of Au and Pt clusters respectively with Ni(111) and Cu(111) increase to a lesser extent than those of Cu and Ni clusters respectively with Ni(111) and Cu(111). Consequently, Au and Pt atoms tend to form SAAs respectively with Ni(111) and Cu(111) hosts compared to Cu and Ni atoms. This trend in the Eint value is determined by the valence orbital energies of the X atom and the Xn cluster. Cu atoms in nCu/Ni(111) have a slightly positive charge but Ag atoms in nAg/Ni(111), Au atoms in nAu/Ni(111), and Ni, Pd, and Pt atoms in nX/Cu(111) (X = Ni, Pd, or Pt) have a negative charge. The negative charge increases in the order Ag < Au in nX/Ni(111) and Ni < Pd < Pt in nX/Cu(111). The Fermi level decreases in energy in the order nCu/Ni(111) ≥ Ni(111) > nAg/Ni(111) > nAu/Ni(111) and Cu(111) ≥ nNi/Cu(111) > nPd/Cu(111) > nPt/Cu(111). The d valence band center decreases in energy in almost the same order. The CO adsorption energy decreases in the order Ni(111) ∼ nCu/Ni(111) > nAg/Ni(111) ∼ nAu/Ni(111) and Cu(111) > nNi/Cu(111) > nPd/Cu(111) > nPt/Cu(111). These properties are explained based on the electronic structures.
Collapse
Affiliation(s)
- Junqing Yin
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan.
| | - Masahiro Ehara
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan. .,Institute for Molecular Science (IMS), Okazaki 444-8585, Japan
| | - Shigeyoshi Sakaki
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan.
| |
Collapse
|
6
|
Wang G, Jing Y, Ting KW, Maeno Z, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Effect of oxygen storage materials on the performance of Pt-based three-way catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt supported on oxygen storage materials (CeO2 and CeO2–ZrO2) as effective three-way catalysts.
Collapse
Affiliation(s)
- Gang Wang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Xiaorui Zhang
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Shuhei Nagaoka
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
7
|
Sun P, Li J, Cheng X, Li X, Bi XT, Wang Z. A novel integrated rotary reactor for
NOx
reduction by
CO
and air preheating:
NOx
removal performance and mechanism. AIChE J 2021. [DOI: 10.1002/aic.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peiliang Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering Shandong University Jinan Shandong China
| | - Jianjie Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering Shandong University Jinan Shandong China
| | - Xingxing Cheng
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering Shandong University Jinan Shandong China
| | - Xiangdong Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering Shandong University Jinan Shandong China
| | - Xiaotao T. Bi
- Department of Chemical and Biological Engineering The University of British Columbia Vancouver Canada
| | - Zhiqiang Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering Shandong University Jinan Shandong China
| |
Collapse
|
8
|
Elmutasim O, Alhassan SM. Unraveling the Role of Surface Termination in Ni 2P(001) for the Direct Desulfurization Reaction of Dibenzothiophene (DBT): A Density Functional Theory (DFT) and Microkinetic Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Omer Elmutasim
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Saeed M. Alhassan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Jing Y, Wang G, Ting KW, Maeno Z, Oshima K, Satokawa S, Nagaoka S, Shimizu KI, Toyao T. Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Zhang L, Spezzati G, Muravev V, Verheijen MA, Zijlstra B, Filot IAW, Su YQ, Chang MW, Hensen EJM. Improved Pd/CeO 2 Catalysts for Low-Temperature NO Reduction: Activation of CeO 2 Lattice Oxygen by Fe Doping. ACS Catal 2021; 11:5614-5627. [PMID: 34055456 PMCID: PMC8154324 DOI: 10.1021/acscatal.1c00564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Indexed: 11/28/2022]
Abstract
Developing better three-way catalysts with improved low-temperature performance is essential for cold start emission control. Density functional theory in combination with microkinetics simulations is used to predict reactivity of CO/NO/H2 mixtures on a small Pd cluster on CeO2(111). At low temperatures, N2O formation occurs via a N2O2 dimer over metallic Pd3. Part of the N2O intermediate product re-oxidizes Pd, limiting NO conversion and requiring rich conditions to obtain high N2 selectivity. High N2 selectivity at elevated temperatures is due to N2O decomposition on oxygen vacancies. Doping CeO2 by Fe is predicted to lead to more oxygen vacancies and a higher N2 selectivity, which is validated by the lower onset of N2 formation for a Pd catalyst supported on Fe-doped CeO2 prepared by flame spray pyrolysis. Activating ceria surface oxygen by transition metal doping is a promising strategy to improve the performance of three-way catalysts.
Collapse
Affiliation(s)
- Long Zhang
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Giulia Spezzati
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Valery Muravev
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Applied
Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eurofins
Material Science Netherlands BV, 5656 AE Eindhoven, The Netherlands
| | - Bart Zijlstra
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ivo A. W. Filot
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ya-Qiong Su
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ming-Wen Chang
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory
of Inorganic Materials and Catalysis, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Papanikolaou KG, Stamatakis M. The catalytic decomposition of nitrous oxide and the NO + CO reaction over Ni/Cu dilute and single atom alloy surfaces: first-principles microkinetic modelling. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00011j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Density functional theory calculations and microkinetic modelling reveal that well-engineered Ni/Cu dilute alloys are promising for the catalytic reduction of NO by CO.
Collapse
Affiliation(s)
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
12
|
Zhang L, Chang MW, Su YQ, Filot IA, Hensen EJ. A theoretical study of CO oxidation and O2 activation for transition metal overlayers on SrTiO3 perovskite. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Zhang L, Su YQ, Chang MW, Filot IAW, Hensen EJM. Linear Activation Energy-Reaction Energy Relations for LaBO 3 (B = Mn, Fe, Co, Ni) Supported Single-Atom Platinum Group Metal Catalysts for CO Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:31130-31141. [PMID: 32952767 PMCID: PMC7493305 DOI: 10.1021/acs.jpcc.9b11079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 06/11/2023]
Abstract
Single-atom catalysts are at the center of attention of the heterogeneous catalysis community because they exhibit unique electronic structures distinct from nanoparticulate forms, resulting in very different catalytic performance combined with increased usage of often costly transition metals. Proper selection of a support that can stably keep the metal in a high dispersion is crucial. Here, we employ spin-polarized density functional theory and microkinetics simulations to identify optimum LaBO3 (B = Mn, Fe, Co, Ni) supported catalysts dispersing platinum group metals as atoms on their surface. We identify a strong correlation between the CO adsorption energy and the d-band center of the doped metal atom. These CO adsorption strength differences are explained in terms of the electronic structure. In general, Pd-doped surfaces exhibit substantially lower activation barriers for CO2 formation than the Rh- and Pt-doped surfaces. Strong Brønsted-Evans-Polanyi correlations are found for CO oxidation on these single-atom catalysts, providing a tool to predict promising compositions. Microkinetics simulations show that Pd-doped LaCoO3 is the most active catalyst for low-temperature CO oxidation. Moderate CO adsorption strength and low reaction barriers explain the high activity of this composition. Our approach provides guidelines for the design of highly active and cost-effective perovskite supported single-atom catalysts.
Collapse
|
14
|
Jeon J, Kon KI, Toyao T, Shimizu KI, Furukawa S. Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem Sci 2019; 10:4148-4162. [PMID: 31057743 PMCID: PMC6471737 DOI: 10.1039/c8sc05496g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
The development of Pd-based alloy catalysts for highly active and selective reduction of NO by CO was investigated. A survey of Pd-based bimetallic catalysts (PdM/Al2O3: M = Cu, In, Pb, Sn, and Zn) revealed that the PdIn/Al2O3 catalyst displayed excellent N2 selectivity even at low temperatures (100% at 200 °C). The catalytic activity of PdIn was further improved by substituting a part of In with Cu, where a Pd(In1-x Cu x ) pseudo-binary alloy structure was formed. The optimized catalyst, namely, Pd(In0.33Cu0.67)/Al2O3, facilitated the complete conversion of NO to N2 (100% yield) even at 200 °C and higher, which has never been achieved using metallic catalysts. The formation of the pseudo-binary alloy structure was confirmed by the combination of HAADF-STEM-EDS, EXAFS, and CO-FT-IR analyses. A detailed mechanistic study based on kinetic analysis, operando XAFS, and DFT calculations revealed the roles of In and Cu in the significant enhancement of catalytic performance: (1) N2O adsorption and decomposition (N2O → N2 + O) were drastically enhanced by In, thus resulting in high N2 selectivity; (2) CO oxidation was promoted by In, thus leading to enhanced low-temperature activity; and (3) Cu substitution improved NO adsorption and dissociation (NO → N + O), thus resulting in the promotion of high-temperature activity.
Collapse
Affiliation(s)
- Jaewan Jeon
- Institute for Catalysis , Hokkaido University , N21, W10 , Sapporo 001-0021 , Japan .
| | - Ken-Ichi Kon
- Institute for Catalysis , Hokkaido University , N21, W10 , Sapporo 001-0021 , Japan .
| | - Takashi Toyao
- Institute for Catalysis , Hokkaido University , N21, W10 , Sapporo 001-0021 , Japan .
- Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis , Hokkaido University , N21, W10 , Sapporo 001-0021 , Japan .
- Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| | - Shinya Furukawa
- Institute for Catalysis , Hokkaido University , N21, W10 , Sapporo 001-0021 , Japan .
- Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| |
Collapse
|
15
|
Hu Q, Cao K, Lang Y, Chen R, Chu S, Jia L, Yue J, Shan B. Improved NO–CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00212j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly dispersed platinum (Pt) nanoparticles are deposited on CeO2 nanorods via atomic layer deposition (ALD) to improve the catalytic activity towards the NO–CO reaction.
Collapse
Affiliation(s)
- Quan Hu
- State Key Laboratory of Material Processing and Die and Mould Technology
- and School of Materials Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology
- and School of Mechanical Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Yun Lang
- State Key Laboratory of Material Processing and Die and Mould Technology
- and School of Materials Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology
- and School of Mechanical Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Shengqi Chu
- Institute of High Energy Physics
- Chinese Academy of Science
- Beijing 100049
- China
| | - Liwei Jia
- Wuxi Weifu International Trade Co., Ltd
- Wuxi
- 214031 PR China
| | - Jun Yue
- Wuxi Weifu International Trade Co., Ltd
- Wuxi
- 214031 PR China
| | - Bin Shan
- State Key Laboratory of Material Processing and Die and Mould Technology
- and School of Materials Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| |
Collapse
|