1
|
Ugartemendia A, Mercero JM, Jimenez-Izal E, de Cózar A. Doping Efects on Ethane/Ethylene Dehydrogenation Catalyzed by Pt 2X Nanoclusters. Chemphyschem 2024; 25:e202400095. [PMID: 38525872 DOI: 10.1002/cphc.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - José M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Abel de Cózar
- Kimika Organikoa I Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, E-48009, Bilbao, Spain
| |
Collapse
|
2
|
Poths P, Li G, Masubuchi T, Morgan HWT, Zhang Z, Alexandrova AN, Anderson SL. Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-Nano Cluster Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patricia Poths
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Guangjing Li
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Tsugunosuke Masubuchi
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Harry W. T. Morgan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott L. Anderson
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Wan H, Gong N, Liu L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Rimaz S, Sabbaghan M, Kosari M, Zarinejad M, Amini M. Anti-sintering MgAl2O4 supported Pt-Ge nanoparticles for propane dehydrogenation: Catalytic insights and machine-learning aided performance analysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Lavroff RH, Morgan HWT, Zhang Z, Poths P, Alexandrova AN. Ensemble representation of catalytic interfaces: soloists, orchestras, and everything in-between. Chem Sci 2022; 13:8003-8016. [PMID: 35919426 PMCID: PMC9278157 DOI: 10.1039/d2sc01367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Catalytic systems are complex and dynamic, exploring vast chemical spaces on multiple timescales. In this perspective, we discuss the dynamic behavior of fluxional, heterogeneous thermal and electrocatalysts and the ensembles of many isomers which govern their behavior. We develop a new paradigm in catalysis theory in which highly fluxional systems, namely sub-nano clusters, isomerize on a much shorter timescale than that of the catalyzed reaction, so macroscopic properties arise from the thermal ensemble of isomers, not just the ground state. Accurate chemical predictions can only be reached through a many-structure picture of the catalyst, and we explain the breakdown of conventional methods such as linear scaling relations and size-selected prevention of sintering. We capitalize on the forward-looking discussion of the means of controlling the size of these dynamic ensembles. This control, such that the most effective or selective isomers can dominate the system, is essential for the fluxional catalyst to be practicable, and their targeted synthesis to be possible. It will also provide a fundamental lever of catalyst design. Finally, we discuss computational tools and experimental methods for probing ensembles and the role of specific isomers. We hope that catalyst optimization using chemically informed descriptors of ensemble nature and size will become a new norm in the field of catalysis and have broad impacts in sustainable energy, efficient chemical production, and more.
Collapse
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Harry W T Morgan
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| |
Collapse
|
6
|
Chen K, Wu X, Zhao J, Zhao H, Li A, Zhang Q, Xia T, Liu P, Meng B, Song W, Zhu X, Liu H, Gao X, Xu C, Shen B. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Ugartemendia A, Mercero JM, de Cózar A, Jimenez-Izal E. Does the Composition in PtGe Clusters Play any Role in Fighting CO Poisoning?. J Chem Phys 2022; 156:174301. [DOI: 10.1063/5.0089179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using state-of-the-art global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating PtGe nanoclusters of different size and composition we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt-Ge mixing, make the equimolar clusters highly resistant towards CO poisoning and therefore, more durable. Importantly, the novel catalysts are not only more resistant to deactivation, but they remain catalytically active towards hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon-octagon-pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with 1:1 Pt:Ge ratio. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, University of the Basque Country - Gipuzkoa Campus, Spain
| | - Jose M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Spain
| | - Abel de Cózar
- Organic Chemistry I, University of the Basque Country - Gipuzkoa Campus, Spain
| | | |
Collapse
|
8
|
Meng X, Duan X, Zhang L, Zhang D, Yang P, Qin H, Zhang Y, Xiao S, Duan L, Zhou R. Long-Chain Alkane Dehydrogenation over Hierarchically Porous Ti-Doped Pt–Sn–K/TiO2–Al2O3 Catalysts. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lin X, Zhang J, Tang J, Yang Y, Liu C, Huang J. Atomically precise structures of Pt 2(S-Adam) 4(PPh 3) 2 complexes and catalytic application in propane dehydrogenation. NANOSCALE 2022; 14:2482-2489. [PMID: 35103280 DOI: 10.1039/d1nr07286b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a bridge between single metal atoms and metal nanoclusters, atomically precise metal complexes are of great significance for controlled synthesis and catalytic applications at the atomic level. Herein, novel Pt2(S-Adam)4(PPh3)2 complexes were prepared via the conventional synthetic methods of metal nanoclusters. The atomically precise crystal structures of the binuclear Pt complexes with three kinds of packing modes in a unit cell were determined by X-ray crystallography. The two Pt atoms are bridged by two S atoms of thiolates, constructing a rhombus on a plane. Moreover, the ultraviolet visible absorption spectra of Pt2(S-Adam)4(PPh3)2 complexes show an apparent absorption peak centered at 454 nm. Furthermore, the Pt complexes were used as precursors to prepare catalysts for non-oxidative propane dehydrogenation. The as-prepared Pt-based catalysts with a particle size of approximately 1 nm demonstrated a propane conversion of about 18% and significantly enhanced selectivity for propylene, up to 93%. Our work will be beneficial to the basic understanding of platinum complexes, as well as the improvement of the catalytic dehydrogenation of propane.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal11091070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.
Collapse
|
11
|
Zhu PX, Wang LC, Stewart F, Ding D, Matz J, Dong P, Ding H. Direct conversion of natural gases in solid oxide cells: A mini-review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Ugartemendia A, Peeters K, Ferrari P, de Cózar A, Mercero JM, Janssens E, Jimenez-Izal E. Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning. Chemphyschem 2021; 22:1603-1610. [PMID: 34058042 DOI: 10.1002/cphc.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Kristien Peeters
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Abel de Cózar
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| | - Jose M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| |
Collapse
|
13
|
Rimaz S, Kosari M, Chen L, Kawi S, Borgna A. Enhanced catalytic performance of Pd nanoparticles during propane dehydrogenation by germanium promotion. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
15
|
Gómez Herranz A, Germán E, Alonso JA, López MJ. Interaction of hydrogen with palladium–copper nanoalloys. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
The influence of modifying nanoflower and nanostar type Pd coatings on low temperature hydrogen permeability through Pd-containing membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu S, Zhang B, Liu G. Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00381f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of metal-based catalysts, including Pt-, Pd-, Rh- and Ni-based bimetallic catalysts for non-oxidative dehydrogenation of light alkanes to olefins.
Collapse
Affiliation(s)
- Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
18
|
Pescara B, Mazzio KA. Morphological and Surface-State Challenges in Ge Nanoparticle Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11685-11701. [PMID: 32866013 DOI: 10.1021/acs.langmuir.0c01891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The intrinsic properties of Ge in tandem with advances in its nanostructuring have resulted in its increased attention in a variety of fields as an alternative to traditional group 12-14 and 14-16 nanoparticles (NPs). The small band gap and size-dependent development of the optical properties in tandem with their good charge transport properties make Ge NPs a suitable material for optoelectronic devices. The low toxicity of Ge, together with its IR photoluminescence (PL) that overlaps with desirable biological optical windows used for tissue imaging, allows the exploitation of these materials in the field of bioimaging and as drug carriers. In addition, the ability of germanium to both exhibit high mechanical stability in its NP form and alloy with lithium and sodium metals has led to it being a highly attractive material for next-generation lithium ion and beyond-lithium batteries. While it is attracting considerable attention in a variety of areas, research on Ge NPs is still relatively nascent. Fundamental aspects of this material, such as its Bohr radius and the origin of different observed PLs, are still under debate. Moreover, the ability to produce Ge NPs with controlled dimensions and morphology is not yet as mature as for other classes of nanomaterials. In this review, the mechanisms and origins of these properties will be introduced, which we then relate to specific applications presented in the literature.
Collapse
Affiliation(s)
- Bruno Pescara
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katherine A Mazzio
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
19
|
Saito H, Sekine Y. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization. RSC Adv 2020; 10:21427-21453. [PMID: 35518732 PMCID: PMC9054567 DOI: 10.1039/d0ra03365k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical utilization of ethane to produce valuable chemicals has become especially attractive since the expanded utilization of shale gas in the United States and associated petroleum gas in the Middle East. Catalytic conversion to ethylene and aromatic hydrocarbons through non-oxidative dehydrogenation and dehydroaromatization of ethane (EDH and EDA) are potentially beneficial technologies because of their high selectivity to products. The former represents an attractive alternative to conventional thermal cracking of ethane. The latter can produce valuable aromatic hydrocarbons from a cheap feedstock. Nevertheless, further progress in catalytic science and technology is indispensable to implement these processes beneficially. This review summarizes progress that has been achieved with non-oxidative EDH and EDA in terms of the nature of active sites and reaction mechanisms. Briefly, platinum-, chromium- and gallium-based catalysts have been introduced mainly for EDH, including effects of carbon dioxide co-feeding. Efforts to use EDA have emphasized zinc-modified MFI zeolite catalysts. Finally, some avenues for development of catalytic science and technology for ethane conversion are summarized.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki Aichi 444-8585 Japan +81 564 55 7287
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
20
|
Gorey TJ, Zandkarimi B, Li G, Baxter ET, Alexandrova AN, Anderson SL. Coking-Resistant Sub-Nano Dehydrogenation Catalysts: PtnSnx/SiO2 (n = 4, 7). ACS Catal 2020. [DOI: 10.1021/acscatal.0c00668] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy J. Gorey
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Borna Zandkarimi
- Chemistry and Biochemistry, University of California, Los Angeles, California, United States
| | - Guangjing Li
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Eric T. Baxter
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anastassia N. Alexandrova
- Chemistry and Biochemistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| | - Scott L. Anderson
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Zhang Z, Zandkarimi B, Alexandrova AN. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces. Acc Chem Res 2020; 53:447-458. [PMID: 31977181 DOI: 10.1021/acs.accounts.9b00531] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterogeneous catalysis is at the heart of the chemical industry. Being able to tune and design efficient catalysts for processes of interest is of the utmost importance, and for this, a molecular-level understanding of heterogeneous catalysts is the first step and indeed a prime focus of modern catalysis research. For a long time, the single most thermodynamically stable structure of the catalytic interface attained under the reaction conditions had been envisioned as the reactive phase. However, some catalytic interfaces continue to undergo structural dynamics in the steady state, triggered by high temperatures and pressures and binding and changing reagents. Among particularly dynamic interfaces are such widely used catalysts as crystalline and amorphous surfaced supporting (sub)nanometallic clusters. Recently, it became clear that this dynamic fluxionality causes the supported clusters to populate many distinct structural and stoichiometric states under catalytic conditions. Hence, the catalytic interface should be viewed as an evolving statistical ensemble of many structures (rather than one structure). Every member in the ensemble contributes to the properties of the catalyst differently, in proportion to its probability of being populated. This new notion flips the established paradigm and calls for a new theory, new modeling approaches, operando measurements, and updated design strategies. The statistical ensemble nature of surface-supported subnanocluster catalysts can be exemplified by oxide-supported and adsorbate-covered Pt, Pd, Cu, and CuPd clusters, which are catalytic toward oxidative and nonoxidative dehydrogenation. They have access to a variety of 3D and quasi-2D shapes. The compositions of their thermal ensembles are dependent on the cluster size, leading to size-specific catalytic activities and the famous "every atom counts" phenomenon. The support and adsorbates affect catalyst structures, and the state of the reacting species causes the ensemble to change in every reaction intermediate. The most stable member of the ensemble dominates the thermodynamic properties of the corresponding intermediate, whereas the kinetics can be determined by more active but less populated metastable catalyst states, and that suggests that many earlier studies might have overlooked the actual active sites. Both effects depend on the relative time scales of catalyst restructuring and reaction dynamics. The catalyst may routinely operate off-equilibrium. Ensemble phenomena lead to surprising exceptions from established rules of catalysis, such as scaling relations and Arrhenius behavior. Catalyst deactivation is also an ensemble property, and its extent of mitigation can be predicted through the new paradigm. These findings were enabled by advances in theory, such as global optimization and subsequent utilization of multiple local minima and pathways sampling as well as operando catalyst characterization. The fact that the per-site and per-species resolution is needed for the description and prediction of catalyst properties gives theory the central role in catalysis research, as most experiments provide ensemble-average information and cannot detect the crucial minority species that may be responsible for the catalytic activity.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Borna Zandkarimi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Li G, Zandkarimi B, Cass AC, Gorey TJ, Allen BJ, Alexandrova AN, Anderson SL. Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability. J Chem Phys 2020; 152:024702. [DOI: 10.1063/1.5129686] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guangjing Li
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Borna Zandkarimi
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ashley C. Cass
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Timothy J. Gorey
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bradley J. Allen
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Anastassia N. Alexandrova
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute, Los Angeles, California 90095, USA
| | - Scott L. Anderson
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
23
|
Zhai H, Sautet P, Alexandrova AN. Global Optimization of Adsorbate Covered Supported Cluster Catalysts: The Case of Pt
7
H
10
CH
3
on α‐Al
2
O
3. ChemCatChem 2019. [DOI: 10.1002/cctc.201901830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huanchen Zhai
- Department of Chemistry and BiochemistryUniversity of California Los Angeles CA-90095 USA
| | - Philippe Sautet
- Department of Chemistry and BiochemistryUniversity of California Los Angeles CA-90095 USA
- Department of Chemical and Biomolecular EngineeringUniversity of California Los Angeles CA-90095 USA
- California NanoSystems Institute Los Angeles CA 90095 USA
| | - Anastassia N. Alexandrova
- Department of Chemistry and BiochemistryUniversity of California Los Angeles CA-90095 USA
- California NanoSystems Institute Los Angeles CA 90095 USA
| |
Collapse
|