1
|
Ge M, Huang J, Tian Y, Zhou L, Li H, Zhang A, Zhu S, Zhu X, Li Q, Min Y, Xu Q, Yuan X. Electrodeposition-Assisted Crystal Growth Regulation of PdBi Clusters on Carbon Cloths for Ethanol Oxidation. Inorg Chem 2023; 62:15138-15147. [PMID: 37676812 DOI: 10.1021/acs.inorgchem.3c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Carbon-supported Pd-based clusters are one of the most promising anodic catalysts for ethanol oxidation reaction (EOR) due to their encouraging activity and practical applications. However, unclear growth mechanism of Pd-based clusters on the carbon-based materials has hindered their extensive applications. Herein, we first introduce multi-void spherical PdBi cluster/carbon cloth (PdBi/CC) composites by an electrodeposition routine. The growth mechanism of PdBi clusters on the CC supports has been systemically investigated by evaluating the selected samples and tuning their compositions, which involve the big difference in standard redox potential between Pd2+/Pd and Bi3+/Bi and easy adsorption of Bi3+ on the surface of Pd-rich seeds. Benefitting from the ensembles of many nanocrystal subunits, multi-void spherical PdBi clusters can present collective properties and novel functionalities. In addition, the outstanding characteristics of CC supports enable PdBi clusters with stable nanostructures. Thanks to the unique structure, Pd20Bi/CC catalysts manifest higher EOR activity and better stability compared to Pd/CC. Systematic characterizations and a series of CO poisoning tests further confirm that the dramatically enhanced EOR activity and stability can be attributed to the incorporation of Bi species and the strong coupling of the structure between PdBi clusters and CC supports.
Collapse
Affiliation(s)
- Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Tian
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Luozeng Zhou
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Aichuang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Wang F, Zhang W, Wan H, Li C, An W, Sheng X, Liang X, Wang X, Ren Y, Zheng X, Lv D, Qin Y. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C-C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202200899. [PMID: 35083836 DOI: 10.1002/anie.202200899] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/14/2023]
Abstract
Advanced electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells are strongly desired owing to the higher energy efficiency. Herein, Pd-PdSe heterostructural nanosheets (Pd-PdSe HNSs) have been successfully fabricated via a one-step approach. These Pd-PdSe HNSs feature unique electronic and geometrical structures, in which unconventional p-d hybridization interactions and tensile strain effect co-exist. Compared with commercial Pd/C and Pd NSs catalysts, Pd-PdSe HNSs display 5.5 (6.6) and 2.5 (2.6) fold enhancement of specific (mass) activity for the EG oxidation reaction (EGOR). Especially, the optimum C1 pathway selectivity of Pd-PdSe HNSs reaches 44.3 %, illustrating the superior C-C bond cleavage ability. Electrochemical in situ FTIR spectroscopy and theoretical calculations demonstrate that the extraordinary p-d hybridization interaction and tensile strain effect could effectively reduce the activation energy of C-C bond breaking and accelerate CO* oxidation, boosting the complete oxidation of EG and improving the catalytic performance.
Collapse
Affiliation(s)
- Yuchen Qin
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Wenlong Zhang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Fengqi Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, college of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xia Sheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Chenxi Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xiaoyu Liang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Pei Liu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xiaopeng Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xin Zheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Yunlai Ren
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Cuilian Xu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p–d Hybridization Interaction in Heterostructural Pd‐PdSe Nanosheets Boosts C−C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchen Qin
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Wenlong Zhang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Fengqi Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces college of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Xia Sheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Chenxi Li
- College of Life Science Chongqing Normal University Chongqing 401331 P. R. China
| | - Xiaoyu Liang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Pei Liu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xiaopeng Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xin Zheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Yunlai Ren
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Cuilian Xu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
5
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
6
|
Fang X, Fan A, Wang Z, Wang Y, Li Y, Li S, Wang Y, Dong C, Sun H, Liu Y, Zhang X, Han Y, Dai X. Multicomponent Pt-based catalyst for highly efficient chemoselective hydrogenation of 4-carboxybenzaldehyde. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tan Y, Zhang Y, Wang X, Zeng L, Luo F, Liu A. Amorphous nickel coating on carbon nanotubes supported Pt nanoparticles as a highly durable and active electrocatalyst for methanol oxidation reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|