1
|
Liu Y, Lin L, Mu R, Fu Q. Oxygen Vacancy Activates the Second-Nearest-Neighbor Lattice Oxygen for Oxidation Reaction. J Phys Chem Lett 2024; 15:9369-9373. [PMID: 39240332 DOI: 10.1021/acs.jpclett.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Oxygen vacancies on the oxide surface are regarded to play critical roles in catalytic oxidation reactions because they can alter the electronic and geometric properties of oxide catalysts. However, the effects of the oxygen vacancy on the CO oxidation activity of the surrounding lattice oxygen have remained elusive. In this work, using high-pressure scanning tunneling microscopy we identify that oxygen vacancy can activate surface lattice oxygen on the Mn3O4 thin layer. It is found that CO reacts with the lattice oxygen located at the second-nearest-neighbor position to the original oxygen vacancies more easily than that at the closest position and at the defect-free surface. This can be ascribed to the lower formation energy of the oxygen vacancies. Our study provides atomic-level insights into the promoting effect of oxygen vacancies on catalytic oxidation reactions.
Collapse
Affiliation(s)
- Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Xu C, Mazeau EJ, West RH. Implementing the Blowers-Masel Approximation to Scale Activation Energy Based on Reaction Enthalpy in Mean-Field Microkinetic Modeling for Catalytic Methane Partial Oxidation. ACS Catal 2024; 14:8013-8029. [PMID: 38779181 PMCID: PMC11106751 DOI: 10.1021/acscatal.3c05436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Mean-field microkinetic modeling is a powerful tool for catalyst design and the simulation of catalytic processes. The reaction enthalpies in a microkinetic model often need to be adjusted when changing species' binding energies to model different catalysts, when performing thermodynamic sensitivity analyses, and when fitting experimental data. When altering reaction enthalpies, the activation energies should also be reasonably altered to ensure realistic reaction rates. The Blowers-Masel approximation (BMA) relates the reaction barrier to the reaction enthalpy. Unlike the Brønsted-Evans-Polani relationship, the BMA requires less data because only one parameter, the intrinsic activation energy, needs to be determined. We validate this application of BMA relations to model surface reactions by comparing against density functional theory data taken from the literature. By incorporating the BMA rate description into the open-source Cantera software, we enable a new workflow, demonstrated herein, allowing rapid screening of catalysts using linear scaling relationships and BMA kinetics within the process simulation software. For demonstration purposes, a catalyst screening for catalytic methane partial oxidation on 81 hypothetical metals is conducted. We compared the results with and without BMA-corrected rates. The heat maps of various descriptors (e.g., CH4 conversion, syngas yield) show that using BMA rates instead of Arrhenius rates (with constant activation energies) changes which metals are most active. Heat maps of sensitivity analyses can help identify which reactions or species are the most influential in shaping the descriptor map patterns. Our findings indicate that while using BMA-adjusted rates did not markedly affect the most sensitive reactions, it did change the most influential species.
Collapse
Affiliation(s)
- Chao Xu
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - Richard H. West
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Yoshiyama Y, Hosokawa S, Haneda M, Morishita M, Asakura H, Teramura K, Tanaka T. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO 3 Perovskite Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5293-5300. [PMID: 36660899 DOI: 10.1021/acsami.2c20165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An environmental catalyst in which a transition metal (Mn, Fe, or Co) was substituted into the Ti site of the host material, SrTiO3, was synthesized, and the reactivity of lattice oxygen was evaluated. For CO oxidation, Mn- and Co-doped SrTiO3 catalysts, which provided high thermal stabilities, exhibited higher activities than Pt/Al2O3 catalysts despite their low surface areas. Temperature-programmed reduction experiments using X-ray absorption fine structure (XAFS) measurements showed that the lattice oxygen of Co-doped catalyst was released at the lowest temperature. Isotopic experiments with CO and 18O2 revealed that the lattice oxygen was involved in CO oxidation on Fe- and Co-doped catalysts; that is, CO oxidation on these catalysts proceeded via the Mars-van Krevelen mechanism. On the other hand, for Mn-doped catalyst, the contribution of lattice oxygen to CO oxidation was relatively negligible, indicating that the reaction proceeded according to the Langmuir-Hinshelwood mechanism. This paper clearly demonstrates that the catalytic mechanism can be adjusted by substituting transition metals into SrTiO3.
Collapse
Affiliation(s)
- Yuji Yoshiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Saburo Hosokawa
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Masaaki Haneda
- Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu507-0071, Japan
| | - Masashige Morishita
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroyuki Asakura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Kentaro Teramura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| |
Collapse
|
4
|
Liang R, Chen X, Qin C, Ye Z, Zhu L, Lou Z. Porous unsupported CuO nanoplates for efficient photothermal CO oxidation. NANOTECHNOLOGY 2022; 34:075708. [PMID: 36379053 DOI: 10.1088/1361-6528/aca2b0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
It is a significant issue for environmental protection and industrial production to eliminate CO, a gas harmful to life and some important reaction sites. Real environmental conditions require catalytic CO oxidation to occur at relatively low temperature. Nowadays, photothermal catalysis has been exploited as a new way to achieve CO elimination, different from thermal catalysis. CuO, as cheap and abundant substitute for precious metals, is considered to have potential in photothermal catalysis. Oxygen vacancies (OV) and lattice oxygen (OL) activity are considered extremely crucial for oxide catalysts in CO oxidation, according to Mars-van Krevelen mechanism. Herein, porous CuO nanoplates with adjustable OVand OLactivity were prepared by a facile method via controlling the morphology and phase composition of precursors. The light-off temperature (50% conversion) of the best sample obtained under the optimal conditions was ∼110 °C and an almost complete conversion was reached at ∼150 °C. It also achieved nearly 70% conversion under 6 standard Suns (6 kW cm-2irradiation) and could work in infrared radiation (IR) regions, which could be attributed to the photo-induced thermal effect and activation effect. The simple synthesis and characterization provide a good example for the future photothermal catalysis.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuehua Chen
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chao Qin
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Liping Zhu
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Zirui Lou
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
5
|
Zhao Q, Xu Y, Greeley J, Savoie BM. Deep reaction network exploration at a heterogeneous catalytic interface. Nat Commun 2022; 13:4860. [PMID: 35982057 PMCID: PMC9388529 DOI: 10.1038/s41467-022-32514-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Characterizing the reaction energies and barriers of reaction networks is central to catalyst development. However, heterogeneous catalytic surfaces pose several unique challenges to automatic reaction network characterization, including large sizes and open-ended reactant sets, that make ad hoc network construction the current state-of-the-art. Here, we show how automated network exploration algorithms can be adapted to the constraints of heterogeneous systems using ethylene oligomerization on silica-supported single-site Ga3+ as a model system. Using only graph-based rules for exploring the network and elementary constraints based on activation energy and size for identifying network terminations, a comprehensive reaction network is generated and validated against standard methods. The algorithm (re)discovers the Ga-alkyl-centered Cossee-Arlman mechanism that is hypothesized to drive major product formation while also predicting several new pathways for producing alkanes and coke precursors. These results demonstrate that automated reaction exploration algorithms are rapidly maturing towards general purpose capability for exploratory catalytic applications.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
6
|
Yigit N, Genest A, Terloev S, Möller J, Rupprechter G. Active sites and deactivation of room temperature CO oxidation on Co 3O 4catalysts: combined experimental and computational investigations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:354001. [PMID: 35588721 DOI: 10.1088/1361-648x/ac718b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Co3O4is a well-known low temperature CO oxidation catalyst, but it often suffers from deactivation. We have thus examined room temperature (RT) CO oxidation on Co3O4catalysts by operando DSC, TGA and MS measurements, as well as by pulsed chemisorption to differentiate the contributions of CO adsorption and reaction to CO2. Catalysts pretreated in oxygen at 400 °C are most active, with the initial interaction of CO and Co3O4being strongly exothermic and with maximum amounts of CO adsorption and reaction. The initially high RT activity then levels-off, suggesting that the oxidative pretreatment creates an oxygen-rich reactive Co3O4surface that upon reaction onset loses its most active oxygen. This specific active oxygen is not reestablished by gas phase O2during the RT reaction. When the reaction temperature is increased to 150 °C, full conversion can be maintained for 100 h, and even after cooling back to RT. Apparently, deactivating species are avoided this way, whereas exposing the active surface even briefly to pure CO leads to immediate deactivation. Computational modeling using DFT helped to identify the CO adsorption sites, determine oxygen vacancy formation energies and the origin of deactivation. A new species of CO bonded to oxygen vacancies at RT was identified, which may block a vacancy site from further reaction unless CO is removed at higher temperature. The interaction between oxygen vacancies was found to be small, so that in the active state several lattice oxygen species are available for reaction in parallel.
Collapse
Affiliation(s)
- Nevzat Yigit
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Alexander Genest
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Schamil Terloev
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jury Möller
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
7
|
Ji W, Wang N, Chen X, Li Q, Lin K, Deng J, Chen J, Xing X. Effects of Subsurface Oxide on Cu 1/CeO 2 Single-Atom Catalysts for CO Oxidation: A Theoretical Investigation. Inorg Chem 2022; 61:10006-10014. [PMID: 35723523 DOI: 10.1021/acs.inorgchem.2c00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported atomic dispersion metals are of great interest, and the interfacial effect between isolated metal atoms and supports is crucial in heterogeneous catalysis. Herein, the behavior of single-atom Cu catalysts dispersed on CeO2 (100), (110), and (111) surfaces has been studied by DFT + U calculations. The interactions between ceria crystal planes and isolated Cu atoms together with their corresponding catalytic activities for CO oxidation are investigated. The CeO2 (100) and (111) surfaces can stabilize active Cu+ species, while Cu exists as Cu2+ on the (110) surface. Cu+ is certified as the most active site for CO adsorption, which can promote the formation of the reaction intermediates and reduce reaction energy barriers. For the CeO2 (100) surface, the interaction between CO and Cu is weak and the CO adsorbate is more likely to activate the subsurface oxygen. The catalytic performance is closely related to the binding strength of CO to the active Cu single atoms on the different subsurfaces. These results bring a significant insight into the rational design of single metal atoms on ceria and other reducible oxides.
Collapse
Affiliation(s)
- Weihua Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Abstract
The epoxidation of propene without forming a substantial amount of byproducts is one of the holy grails of catalysis. Supported Cu, Ag and Au catalysts are studied for this reaction and the activity of the supported metals is generally well understood. On the contrary, limited information is available on the influence of the support on the epoxide selectivity. The reaction of propene with equal amounts of hydrogen and oxygen was tested over gold nanoparticles deposited onto CeO2, TiO2, WO3, γ-Al2O3, SiO2, TiO2-SiO2 and titanosilicate-1. Several metal oxide supports caused further conversion of the synthesized propene oxide. Strongly acidic supports, such as WO3 and titanosilicate-1, catalyzed the isomerization of propene oxide towards propanal and acetone. Key factors for achieving high PO selectivity are having inert or neutralized surface sites, a low specific surface and/or a low density of surface -OH groups. This work provides insights and practical guidelines to which metal oxide support properties lead to which products in the reaction of propene in the presence of oxygen and hydrogen over supported gold catalysts.
Collapse
|
9
|
Beniya A, Miwa K, Hirata H, Watanabe Y, Higashi S. Insight for Designing Mass-Efficient Metal-Oxide-Supported Heterogeneous Catalyst from the Identification of the Catalytically Active Edge Sites Using Isotopically Labeled 13CO and 18O2. ACS Catal 2022. [DOI: 10.1021/acscatal.1c03948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Beniya
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kazutoshi Miwa
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Hirohito Hirata
- Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan
| | - Yoshihide Watanabe
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shougo Higashi
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
10
|
Abstract
The preferential CO oxidation (so-called CO-PROX) is the selective CO oxidation amid H2-rich atmospheres, a process where ceria-based materials are consolidated catalysts. This article aims to disentangle the potential CO–H2 synergism under CO-PROX conditions on the low-index ceria surfaces (111), (110) and (100). Polycrystalline ceria, nanorods and ceria nanocubes were prepared to assess the physicochemical features of the targeted surfaces. Diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) shows that ceria surfaces are strongly carbonated even at room temperature by the effect of CO, with their depletion related to the CO oxidation onset. Conversely, formate species formed upon OH + CO interaction appear at temperatures around 60 °C and remain adsorbed regardless the reaction degree, indicating that these species do not take part in the CO oxidation. Density functional theory calculations (DFT) reveal that ceria facets exhibit high OH coverages all along the CO-PROX reaction, whilst CO is only chemisorbed on the (110) termination. A CO oxidation mechanism that explains the early formation of carbonates on ceria and the effect of the OH coverage in the overall catalytic cycle is proposed. In short, hydroxyl groups induce surface defects on ceria that increase the COx–catalyst interaction, revealed by the CO adsorption energies and the stabilization of intermediates and readsorbed products. In addition, high OH coverages are shown to facilitate the hydrogen transfer to form less stable HCOx products, which, in the case of the (110) and (100), is key to prevent surface poisoning. Altogether, this work sheds light on the yet unclear CO–H2 interactions on ceria surfaces during CO-PROX reaction, providing valuable insights to guide the design of more efficient reactors and catalysts for this process.
Collapse
|
11
|
Yan D, Kristoffersen HH, Pedersen JK, Rossmeisl J. Rationally Tailoring Catalysts for the CO Oxidation Reaction by Using DFT Calculations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dengxin Yan
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Jack K. Pedersen
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
12
|
Wang Y, Yang X, Hou C, Yin F, Wang G, Zhu X, Jiang G, Li C. Improved Catalytic Activity and Stability of Ba Substituted SrTiO
3
Perovskite for Oxidative Coupling of Methane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Wang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Xiao Yang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Chenxiao Hou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Fumin Yin
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Guowei Wang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Xiaolin Zhu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Chunyi Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| |
Collapse
|
13
|
Kaatz FH, Murzin DY, Bultheel A. Coordination-Dependent Kinetics in the Catalysis of Gold Nanoclusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Forrest H. Kaatz
- Institutional Research, Mesalands Community College, 911 South 10th Street, Tucumcari, New Mexico 88401, United States
| | - Dmitry Yu. Murzin
- Industrial Chemistry and Reaction Engineering, Abo Akademi University, Biskopsgatan 8, Turku 20500, Finland
| | - Adhemar Bultheel
- Department Computer Sci., KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium
| |
Collapse
|
14
|
Shen W. Morphology-dependent nanocatalysis: tricobalt tetraoxide. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04344-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Sun Y, Gao Y, He C, Song W, Jiang Z, Albilali R, Bai B. Efficient and stable low-temperature CO oxidation over Pt/In–SnO 2 composite triggered by abundant oxygen vacancies and adsorption sites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In ion doping can greatly improve the active oxygen migration ability in the Pt/In–SnO2 catalyst, which is beneficial to CO oxidation at low temperature.
Collapse
Affiliation(s)
- Yukun Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Water and Environment
- Chang'an University
- Xi'an 710064
| | - Yang Gao
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- P.R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- P.R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Reem Albilali
- Department of Chemistry
- College of Science
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Water and Environment
- Chang'an University
- Xi'an 710064
| |
Collapse
|
16
|
Sarma BB, Plessow PN, Agostini G, Concepción P, Pfänder N, Kang L, Wang FR, Studt F, Prieto G. Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. J Am Chem Soc 2020; 142:14890-14902. [DOI: 10.1021/jacs.0c03627] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bidyut B. Sarma
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Giovanni Agostini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Patricia Concepción
- ITQ Instituto de Tecnologı́a Quı́mica, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientı́ficas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Norbert Pfänder
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße, 45470 Mülheim an der Ruhr, Germany
| | - Liqun Kang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Feng R. Wang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- ITQ Instituto de Tecnologı́a Quı́mica, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientı́ficas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
17
|
Study on different proportions of ferromanganese as an efficient mercury removal adsorbent: Role of external magnetic field. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Annamalai L, Liu Y, Deshlahra P. Selective C–H Bond Activation via NOx-Mediated Generation of Strong H-Abstractors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Leelavathi Annamalai
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yilang Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|