1
|
Ye R, Huang YY, Chen CC, Yao YG, Fan M, Zhou Z. Emerging catalysts for the ambient synthesis of ethylene glycol from CO 2 and its derivatives. Chem Commun (Camb) 2023; 59:2711-2725. [PMID: 36752126 DOI: 10.1039/d2cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuan-Yuan Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Chong-Chong Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,College of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming, 82071, USA. .,College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|
2
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
3
|
Xu X, Hu X, Luo Z, Cao Y, Zhu YA, Li W, Zhou J, Zhou X. Engineering an egg-shell structure for the Ag/SiO 2 pellet catalyst for selective hydrogenation of dimethyl oxalate to methyl glycolate. NEW J CHEM 2023. [DOI: 10.1039/d3nj00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An egg-shell-type Ag/SiO2 pellet catalyst with an optimized thickness of the Ag-shell exhibits both enhanced activity and selectivity for DMO hydrogenation to MG.
Collapse
Affiliation(s)
- Xiaofeng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Hu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zuwei Luo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi-An Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Li
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinghong Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
5
|
Wang H, Zhao W, Rehman MU, Liu W, Xu Y, Huang H, Wang S, Zhao Y, Mei D, Ma X. Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenru Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mooeez Ur Rehman
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuxi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Donghai Mei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Xue H, Qin S, Wang X, Zhang C, Wang D, Dai B. Influence of Pd‐Doping on The Efficiency of In
2
O
3
/ZrO
2
Catalysts Used for Hydrogenating Dimethyl Oxalate to Ethanol. ChemistrySelect 2022. [DOI: 10.1002/slct.202103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Xue
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Siqian Qin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Xue Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Chuancai Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Denghao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| |
Collapse
|
7
|
Yan WQ, Zhou RJ, Jing LJ, Cao YQ, Zhou JH, Sui ZJ, Li W, Chen D, Zhou XG, Zhu YA. Computer-aided bimetallic catalyst screening for ester selective hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bimetallic catalyst screening for ester selective hydrogenation has been performed by combining microkinetic analysis and machine learning methods.
Collapse
Affiliation(s)
- Wei-Qi Yan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui-Jia Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Jun Jing
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Qiang Cao
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing-Hong Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Li
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Xu Y, Huang H, Kong L, Ma X. Effect of calcination temperature on the Cu–ZrO 2 interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01210c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5 wt% Cu/ZrO2 catalysts showed satisfying performance in DMO hydrogenation to EG via simply tuning the calcination temperature. The synergistic effect of the Cu0–Cu+–ZrO2 interface in activating H2 molecules and carbonyl bonds was elucidated.
Collapse
Affiliation(s)
- Yuxi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lingxin Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Coupling of phenylacetaldehyde and styrene oxide with biorenewable alkenes in eco-friendly solvents. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
You H, Gao F, Wang C, Song T, Li J, Wang X, Zhang Y, Du Y. Morphology Control Endows Palladium‐Indium Nanocatalysts with High Catalytic Performance for Alcohol Oxidation. ChemElectroChem 2021. [DOI: 10.1002/celc.202100864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huaming You
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaomei Wang
- Research Center for Green Printing Nanophotonic Materials Jiangsu Key Laboratory for Environment Functional Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
11
|
Song T, Qi Y, Jia A, Ta N, Lu J, Wu P, Li X. Continuous hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol at Cu-MoOx interface with a low H2/ester ratio. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhao Y, Kan X, Yun H, Wang D, Li N, Li G, Shen J. Synthesis of a high surface area and highly dispersed Cu-O-Si complex oxide used for the low-temperature hydrogenation of dimethyl oxalate to ethylene glycol. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Sun Y, Ma Q, Ge Q, Sun J. Tunable Synthesis of Ethanol or Methyl Acetate via Dimethyl Oxalate Hydrogenation on Confined Iron Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannan Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
14
|
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.
Collapse
|
15
|
Highly active Pd-Fe/α-Al2O3 catalyst with the bayberry tannin as chelating promoter for CO oxidative coupling to diethyl oxalate. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yu X, Burkholder M, Karakalos SG, Tate GL, Monnier JR, Gupton BF, Williams CT. Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02334e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper supported on KIT-6 mesoporous silica was prepared via ammonia evaporation (AE) method and applied for the catalytic hydrogenation of dimethyl oxalate (DMO) to ethylene glycol (EG).
Collapse
Affiliation(s)
- Xinbin Yu
- Department of Chemical Engineering
- University of South Carolina
- Columbia
- USA
| | - Michael Burkholder
- Department of Chemical Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | | | - Gregory L. Tate
- Department of Chemical Engineering
- University of South Carolina
- Columbia
- USA
| | - John R. Monnier
- Department of Chemical Engineering
- University of South Carolina
- Columbia
- USA
| | - B. Frank Gupton
- Department of Chemical Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | | |
Collapse
|
17
|
Xu Y, Kong L, Huang H, Wang H, Wang X, Wang S, Zhao Y, Ma X. Promotional effect of indium on Cu/SiO 2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01350e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CuIn/SiO2 with 1.0 wt% indium shows the best catalytic performance for DMO hydrogenation to EG. The synergistic effect of Cu0–Cu+–CuIn alloy in activating H2 molecules and carbonyl bonds is elucidated.
Collapse
Affiliation(s)
- Yuxi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lingxin Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Strekalova AA, Shesterkina AA, Kustov LM. Recent progress in hydrogenation of esters on heterogeneous bimetallic catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01603b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development and research of highly effective heterogeneous catalysts for the hydrogenation of esters, providing high activity and selectivity of the formation of the corresponding alcohols, is an urgent task of modern heterogeneous catalysis.
Collapse
Affiliation(s)
- Anna A. Strekalova
- National University of Science and Technology MISiS, Leninsky Prospect 4, Moscow, 119991, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Anastasiya A. Shesterkina
- National University of Science and Technology MISiS, Leninsky Prospect 4, Moscow, 119991, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Leonid M. Kustov
- National University of Science and Technology MISiS, Leninsky Prospect 4, Moscow, 119991, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
19
|
Zhang J, Kong L, Chen Y, Huang H, Zhang H, Yao Y, Xu Y, Xu Y, Wang S, Ma X, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Effect of Calcination Temperature on the Textural Properties and Catalytic Behavior of the Al2O3 Doped Mesoporous Monometallic Cu Catalysts in Dimethyl Oxalate Hydrogenation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Jiao LY, Zhang Z, Hong Q, Ning ZH, Liu S, Sun M, Hao Q, Xu L, Li Z, Ma XX. Recyclable copper catalyst on chitosan for facile preparation of alkyl/aryl mixed phosphates via deaminated esterification between diphenylphosphoryl azides and aliphatic alcohols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Zheng J, Fang H, Duan X, Lin H, Yang Y, Yuan Y. Spatial Ensembles of Copper-Silica with Carbon Nanotubes as Ultrastable Nanostructured Catalysts for Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27268-27276. [PMID: 32441505 DOI: 10.1021/acsami.0c06763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalyst deactivation is one of the most important issues in heterogeneous catalysis. Constructing a stable nanoscale structure that maintains efficient activity and prolonged stability under redox conditions for catalysis, particularly hydrogenation reactions, remains attractive albeit the flourishing nanoscience. This work presents a facile route to synthesize a semi-encapsulated transition metal by assembling three-dimensional transition metal silicate nanotubes onto carbon nanotubes (CNTs) as precursors. The obtained materials expose an active surface of the transition metal for efficient catalysis and form a specific structure to inhibit the migration of metal nanoparticles (NPs) by establishing strong metal-support interactions. Cu@SiO2 prepared by common precipitation shows an inferior activity, and its performance is easily attenuated because of the aggregation of Cu NPs. The addition of CNTs as a carrier doubles the intrinsic activity of Cu catalysts. This hybrid catalyst, which consists of Cu species, SiO2, and CNTs, is among the best catalysts for dimethyl oxalate hydrogenation with boosting activity of 25 h-1 and enhanced stability of more than 200 h.
Collapse
Affiliation(s)
- Jianwei Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huihuang Fang
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Xinping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Haiqiang Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Youzhu Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Zhang M, Yang Y, Li A, Yao D, Gao Y, Fayisa BA, Wang M, Huang S, Lv J, Wang Y, Ma X. Nanoflower‐like Cu/SiO
2
Catalyst for Hydrogenation of Ethylene Carbonate to Methanol and Ethylene Glycol: Enriching H
2
Adsorption. ChemCatChem 2020. [DOI: 10.1002/cctc.202000365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengjiao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Antai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Dawei Yao
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yueqi Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Mei‐Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Centre of Chemical Science and Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
24
|
Ye RP, Lin L, Wang LC, Ding D, Zhou Z, Pan P, Xu Z, Liu J, Adidharma H, Radosz M, Fan M, Yao YG. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05477] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Run-Ping Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Ling Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Lu-Cun Wang
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Pengbin Pan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, U.K
| | - Hertanto Adidharma
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maciej Radosz
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maohong Fan
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason
Building, 790 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
25
|
Kong X, Wu Y, Ding L, Wang R, Chen J. Effect of Cu loading on the structural evolution and catalytic activity of Cu–Mg/ZnO catalysts for dimethyl oxalate hydrogenation. NEW J CHEM 2020. [DOI: 10.1039/c9nj06085e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proper Cu loading introduced into the Cu–Mg/ZnO system facilitates strengthening of the Cu–Zn synergistic effect and optical surface chemical properties.
Collapse
Affiliation(s)
- Xiangpeng Kong
- Department of Chemistry and Chemical Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
- State Key Laboratory of Coal Conversion
| | - Yuehuan Wu
- Department of Chemistry and Chemical Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
| | - Lifeng Ding
- Department of Chemistry and Chemical Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
| | - Ruihong Wang
- Department of Chemistry and Chemical Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P. R. China
| |
Collapse
|