1
|
Gong W, Ma J, Chen G, Dai Y, Long R, Zhao H, Xiong Y. Unlocking the catalytic potential of heterogeneous nonprecious metals for selective hydrogenation reactions. Chem Soc Rev 2024. [PMID: 39659267 DOI: 10.1039/d4cs01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Selective hydrogenation has been employed extensively to produce value-added chemicals and fuels, greatly alleviating the problems of fossil resources and green synthesis. However, the design and synthesis of highly efficient catalysts, especially those that are inexpensive and abundant in the earth's crust, is still required for basic research and subsequent industrial applications. In recent years, many studies have revealed that the rational design and synthesis of heterogeneous catalysts can efficaciously improve the catalytic performance of hydrogenation reactions. However, the relationship between nonprecious metal catalysts and hydrogenation performance from the perspective of different catalytic systems still remains to be understood. In this review, we provide a comprehensive and systematic overview of the recent advances in the synthesis of nonprecious metal catalysts for heterogeneous selective hydrogenation reactions including thermocatalytic hydrogenation/transfer hydrogenation, photocatalytic hydrogenation and electrocatalytic reduction. In addition, we also aim to provide a clear picture of the recent design strategies and proposals for the nonprecious metal catalysed hydrogenation reactions. Finally, we discuss the current challenges and future research opportunities for the precise design and synthesis of nonprecious metal catalysts for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Wanbing Gong
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Guangyu Chen
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yitao Dai
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Ran Long
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Huijun Zhao
- School of Environment & Science, Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Anhui Engineering Research Center of Carbon Neutrality, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
2
|
Pornsetmetakul P, Maineawklang N, Prasertsab A, Salakhum S, Hensen EJM, Wattanakit C. Mild Hydrogenation of 2-Furoic Acid by Pt Nanoparticles Dispersed in a Hierarchical ZSM-5 Zeolite. Chem Asian J 2023; 18:e202300733. [PMID: 37792279 DOI: 10.1002/asia.202300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Hydrogenation of biobased compounds can add value to platform molecules obtained from biomass refining. Herein, we explore the hydrogenation of 2-furoic acid (2-furancarboxylic acid, FCA), a derivative of furfural, with H2 generated in situ by NaBH4 hydrolysis at ambient conditions. Nearly complete conversion of FCA was obtained with tetrahydrofuroic acid (THFA) and 5-hydroxyvaleric acid (5-HVA) as the only two reaction products over Pt nanoparticles supported on hierarchical ZSM-5. Small Pt nanoparticles (2 to 3 nm) were stabilized by ZSM-5 nanosheets. At an optimized Pt loading, the Pt nanoparticles can catalyze the hydrolysis of NaBH4 and the subsequent hydrogenation of FCA with the assistance of Brønsted acid sites. Nanostructuring ZSM-5 into nanosheets and its acidity contributes to the stability of the dispersed Pt nanoparticles. Deactivation due to NaBO2 deposition on the Pt particles can be countered by a simple washing treatment. Overall, this approach shows the promise of mild hydrogenation of biobased feedstock coupled with NaBH4 hydrolysis.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Anittha Prasertsab
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Saros Salakhum
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
3
|
Wang N, Liu J, Li X, Wang C, Ma L. One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
4
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Shen Y, Chen C, Zou Z, Hu Z, Fu Z, Li W, Pan S, Zhang Y, Zhang H, Yu Z, Zhao H, Wang G. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: tunable activity and selectivity via N,P co-doping. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Cheng S, Lu S, Liu X, Li G, Wang F. Enhanced Activity of Alkali-Treated ZSM-5 Zeolite-Supported Pt-Co Catalyst for Selective Hydrogenation of Cinnamaldehyde. Molecules 2023; 28:molecules28041730. [PMID: 36838718 PMCID: PMC9965589 DOI: 10.3390/molecules28041730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
A bimetallic Pt8Co1 supported on alkali-treated ZSM-5 zeolite (ZSM-5-AT) was prepared through the impregnation method. The structure and surface properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-sorption and X-ray photoelectron spectroscopy (XPS) as well as temperature-programmed desorption of NH3 (NH3-TPD) and temperature-programmed reduction of H2 (H2-TPR). The TEM images present that the bimetallic Pt8Co1 nanoparticles with a mean particle size of 4-6 nm were uniformly dispersed on the alkali-treated ZSM-5 zeolite. The bimetallic Pt8Co1/ZSM-5-AT catalyst exhibited an extraordinary COL selectivity of 65% at a >99% CAL conversion efficiency, which showed a much higher catalytic performance (including the activity and selectivity) than the monometallic Pt/ZSM-5-AT and Co/ZSM-5-AT catalysts in the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) using hydrogen as reducing agent. The high catalytic activity of the bimetallic catalyst was attributed to the higher electron density of Pt species and more acidic sites of the alkali-treated ZSM-5 zeolite support. The recovery test showed no obvious loss of its initial activity of the Pt8Co1/ZSM-5-AT catalyst for five times.
Collapse
Affiliation(s)
- Shibo Cheng
- Pittsburgh Institute (SCUPI), Sichuan University, Chengdu 610065, China
| | - Shan Lu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China
| | - Xiang Liu
- Hunan Drug Inspection Center, Hunan Institute for Drug Control, Changsha 410013, China
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Correspondence: (G.L.); (F.W.)
| | - Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (G.L.); (F.W.)
| |
Collapse
|
7
|
Mild-temperature chemoselective hydrogenation of cinnamaldehyde over amorphous Pt/Fe-Asp-A nanocatalyst with enhanced stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Reaction Kinetics of Cinnamaldehyde Hydrogenation over Pt/SiO2: Comparison between Bulk and Intraparticle Diffusion Models. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/8303874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The liquid-phase hydrogenation of cinnamaldehyde over a Pt/SiO2 catalyst was investigated experimentally and theoretically. The experiments were conducted in a 300 cm3 stainless steel stirred batch reactor supplied with hydrogen gas and ethanol as a solvent. Five Langmuir–Hinshelwood kinetic models were investigated to fit the experimental data. The predictions from the bulk model were compared with predictions from the intraparticle diffusion model. Competitive and non-competitive mechanisms were applied to produce the main intermediate compound, cinnamyl alcohol. Reaction rate parameters for the different reaction steps were calculated by comparing between the experimental and mathematical models. All rate data utilized in the present study were obtained in the kinetic regime. The kinetic parameters were obtained by applying a nonlinear dynamic optimization algorithm. Nevertheless, the comparison between the methodology of the present model and these five models indicated that the non-competitive mechanism is more acceptable and identical with the single-site Langmuir–Hinshelwood kinetic model including mass transfer effects and it mimicked the reactant behavior better than the other models. In addition, the observed mean absolute error (MAE) for the non-competitive mechanism of the present model was 2.3022 mol/m3; however, the MAE for the competitive mechanism was 2.8233 mol/m3, which is an increase of approximately 18%. The prediction of the intraparticle diffusion model was found to be very close to that of the bulk model owing to the use of a catalyst with a very small particle size (<40 microns). Employing a commercial 5% Pt/SiO2 catalyst showed a result consistent with previous research using different catalysts, with an activation energy of ≈24 kJ/mol.
Collapse
|
9
|
Vikanova KV, Redina EA, Kapustin GI, Mishin IV, Davshan NA, Kustov LM. Selective hydrogenation of α,β-unsaturated aldehydes over Pt supported on cerium–zirconium mixed oxide of different composition. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Capelli S, Cattaneo S, Stucchi M, Villa A, Prati L. Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Roman CL, da Silva Moura N, Wicker S, Dooley KM, Dorman JA. Induction Heating of Magnetically Susceptible Nanoparticles for Enhanced Hydrogenation of Oleic Acid. ACS APPLIED NANO MATERIALS 2022; 5:3676-3685. [PMID: 35372795 PMCID: PMC8961733 DOI: 10.1021/acsanm.1c04351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 06/13/2023]
Abstract
Radio frequency (RF) induction heating was compared to conventional thermal heating for the hydrogenation of oleic acid to stearic acid. The RF reaction demonstrated decreased coke accumulation and increased product selectivity at comparable temperatures over mesoporous Fe3O4 catalysts composed of 28-32 nm diameter nanoparticles. The Fe3O4 supports were decorated with Pd and Pt active sites and served as the local heat generators when subjected to an alternating magnetic field. For hydrogenation over Pd/Fe3O4, both heating methods gave similar liquid product selectivities, but thermogravimetric analysis-differential scanning calorimetry measurements showed no coke accumulation for the RF-heated catalyst versus 6.5 wt % for the conventionally heated catalyst. A different trend emerged when hydrogenation over Pt/Fe3O4 was performed. Compared to conventional heating, the RF increased the selectivity to stearic acid by an additional 15%. Based on these results, RF heating acting upon a magnetically susceptible nanoparticle catalyst would also be expected to positively impact systems with high coking rates, for example, nonoxidative dehydrogenations.
Collapse
Affiliation(s)
- Cameron L Roman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Natalia da Silva Moura
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Scott Wicker
- Department of Chemistry, Rhodes College, Memphis, Tennessee 38112, United States
| | - Kerry M Dooley
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Gong X, Shi Q, Zhang X, Li J, Ping G, Xu H, Ding H, Li G. Synergistic effects of PtFe/CeO2 catalyst afford high catalytic performance in selective hydrogenation of cinnamaldehyde. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Mente P, Mashindi V, Magubane A, Phaahlamohlaka TN, Gangatharan PM, Forbes RP, Coville NJ. Vapour phase hydrogenation of cinnamaldehyde using cobalt supported inside and outside hollow carbon spheres. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydrogenation of cinnamaldehyde is usually performed in the liquid phase in batch mode. In this study, a vapour phase flow system has been used to evaluate the use of cobalt catalysts supported inside and outside hollow carbon spheres (HCSs). The influence of temperature, hydrogen flow rate, and catalyst mass on the hydrogenation reaction was investigated. The catalysts generally showed modest conversion to the required products, hydrocinnamaldehyde, 3-phenyl propanol, cinnamyl alcohol, together with formation of various decomposition products. The data revealed that the Co@HCS showed better conversion and product selectivity compared with the Co/HCS. The catalysts with smaller particle sizes (ca. 6 nm) were more efficient than those with larger particles (30–40 nm). An increase in reaction temperature (200–300 °C) resulted in a lower cinnamaldehyde conversion and a poor product selectivity. TPR studies revealed that the Co@HCSs had a stronger metal-support interaction than the Co/HCSs catalysts. Catalyst recycling studies revealed that only the Co/HCSs could be regenerated (four cycles) and post reaction analysis of the catalysts revealed that this was due to HCS pore blockage and not Co sintering.
Collapse
Affiliation(s)
- Pumza Mente
- DSI-NRF Centre of Excellence in Strong Materials, Johannesburg 2000, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Victor Mashindi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Alice Magubane
- DSI-NRF Centre of Excellence in Strong Materials, Johannesburg 2000, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tumelo N. Phaahlamohlaka
- DSI-NRF Centre of Excellence in Catalysis, Pretoria 0001, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Prakash M. Gangatharan
- DSI-NRF Centre of Excellence in Strong Materials, Johannesburg 2000, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Roy P. Forbes
- DSI-NRF Centre of Excellence in Catalysis, Pretoria 0001, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Neil J. Coville
- DSI-NRF Centre of Excellence in Strong Materials, Johannesburg 2000, South Africa
- DSI-NRF Centre of Excellence in Catalysis, Pretoria 0001, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
14
|
Liu Y, Wang X, Zhang C, Xu Q, Dang L, Zhao X, Tan H, Li Y, Zhao F. Defect engineering and spilt-over hydrogen in Pt/(WO 3–TH 2) for selective hydrogenation of CO bonds. NEW J CHEM 2022. [DOI: 10.1039/d2nj02497g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of defects in pre-treatment WOx on the catalytic performance of selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been revealed.
Collapse
Affiliation(s)
- Yanchun Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xinchao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Environment, Northeast Normal University, Changchun 130117, P. R. China
| | - Qiu Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lingling Dang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Liu C, Zhu P, Liu H, Zhang X. Tailoring Locations and Electronic States of Rh Nanoparticles in KL Zeolite by Varying the Reduction Temperature for Selective Phenol Hydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Ding S, Ganesh M, Jiao Y, Ou X, Isaacs MA, S'ari M, Torres Lopez A, Fan X, Parlett CMA. Palladium-doped hierarchical ZSM-5 for catalytic selective oxidation of allylic and benzylic alcohols. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211086. [PMID: 34703623 PMCID: PMC8527205 DOI: 10.1098/rsos.211086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Hierarchical zeolites have the potential to provide a breakthrough in transport limitation, which hinders pristine microporous zeolites and thus may broaden their range of applications. We have explored the use of Pd-doped hierarchical ZSM-5 zeolites for aerobic selective oxidation (selox) of cinnamyl alcohol and benzyl alcohol to their corresponding aldehydes. Hierarchical ZSM-5 with differing acidity (H-form and Na-form) were employed and compared with two microporous ZSM-5 equivalents. Characterization of the four catalysts by X-ray diffraction, nitrogen porosimetry, NH3 temperature-programmed desorption, CO chemisorption, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy allowed investigation of their porosity, acidity, as well as Pd active sites. The incorporation of complementary mesoporosity, within the hierarchical zeolites, enhances both active site dispersion and PdO active site generation. Likewise, alcohol conversion was also improved with the presence of secondary mesoporosity, while strong Brønsted acidity, present solely within the H-form systems, negatively impacted overall selectivity through undesirable self-etherification. Therefore, tuning support porosity and acidity alongside active site dispersion is paramount for optimal aldehyde production.
Collapse
Affiliation(s)
- Shengzhe Ding
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Muhammad Ganesh
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Liaoning, People's Republic of China
| | - Xiaoxia Ou
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Mark A. Isaacs
- Department of Chemistry, University College London, London WC1E 6BT, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
| | - Mark S'ari
- Nanoscience and Nanotechnology Facility, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Antonio Torres Lopez
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
- Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
| | - Xiaolei Fan
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Christopher M. A. Parlett
- Department of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M13 9PL, UK
- Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
- University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
17
|
Fang X, Fan A, Wang Z, Wang Y, Li Y, Li S, Wang Y, Dong C, Sun H, Liu Y, Zhang X, Han Y, Dai X. Multicomponent Pt-based catalyst for highly efficient chemoselective hydrogenation of 4-carboxybenzaldehyde. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Shakor ZM, AbdulRazak AA, Shuhaib AA. Optimization of process variables for hydrogenation of cinnamaldehyde to cinnamyl alcohol over a Pt/SiO 2 catalyst using response surface methodology. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1922394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zaidoon M. Shakor
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | | | | |
Collapse
|
19
|
Zhang W, Xin H, Zhang Y, Jin X, Wu P, Xie W, Li X. Bimetallic Pt-Fe catalysts supported on mesoporous TS-1 microspheres for the liquid-phase selective hydrogenation of cinnamaldehyde. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Selective hydrogenation of cinnamaldehyde with Ni Fe1-Al2O4+ composite oxides supported Pt catalysts: C O versus C C selectivity switch by varying the Ni/Fe molar ratios. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Ning L, Zhang M, Liao S, Zhang Y, Jia D, Yan Y, Gu W, Liu X. Differentiation of Pt−Fe and Pt−Ni
3
Surface Catalytic Mechanisms towards Contrasting Products in Chemoselective Hydrogenation of α,β‐Unsaturated Aldehydes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liangmin Ning
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Mingtao Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Yuting Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Dandan Jia
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Yunfang Yan
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Wen Gu
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| | - Xin Liu
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (MOE) Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Collaborative Innovation Centre of Chemical Science and Engineering Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
22
|
Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, Zhao H. Fe‐Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yang Lv
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Miaomiao Han
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Wanbing Gong
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Dongdong Wang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chun Chen
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Centre for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Centre for Clean Environment and Energy Gold Coast Campus Griffith University Queensland 4222 Australia
| |
Collapse
|
23
|
Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, Zhao H. Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. Angew Chem Int Ed Engl 2020; 59:23521-23526. [PMID: 32909312 DOI: 10.1002/anie.202009913] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/08/2020] [Indexed: 11/09/2022]
Abstract
Selective hydrogenation of C=O against the conjugated C=C in cinnamaldehyde (CAL) is indispensable to produce cinnamyl alcohol (COL). Nonetheless, it is challenged by the low selectivity and the need to use organic solvents. Herein, for the first time, we report the use of Fe-Co alloy nanoparticles (NPs) on N-doped carbon support as a selective hydrogenation catalyst to efficiently convert CAL to COL. The resultant catalyst with the optimized Fe/Co ratio of 0.5 can achieve an exceptional COL selectivity of 91.7 % at a CAL conversion of 95.1 % in pure water medium under mild reaction conditions, ranking it the best performed catalyst reported to date. The experimental results confirm that the COL selectivity and CAL conversion efficiency are, respectively promoted by the presence of Fe and Co, while the synergism of the alloyed Fe-Co is the key to concurrently achieve high COL selectivity and CAL conversion efficiency.
Collapse
Affiliation(s)
- Yang Lv
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Miaomiao Han
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongdong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
24
|
Hui T, Miao C, Feng J, Liu Y, Wang Q, Wang Y, Li D. Atmosphere induced amorphous and permeable carbon layer encapsulating PtGa catalyst for selective cinnamaldehyde hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Unusual behavior of bimetallic nanoparticles in catalytic processes of hydrogenation and selective oxidation. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recent results obtained in studying mono- and bimetallic catalysts for selective hydrogenation of unsaturated carbonyl compounds, even unsaturated ones, acetylenic and nitro compounds as well as CO and bio-available alcohols oxidation are reviewed from the standpoint of the strong interaction between the metal nanoparticles, on the one hand, and two metals in the composition of bimetallic nanoparticles, on the other hand. Such interactions were demonstrated to result in partial positive or negative charging of metal nanoparticles, which, in turn, changes their adsorption and catalytic properties, especially with respect to the reactions involving hydrogen. Among the systems studied, Au–Pt, Au–Pd, Au–Cu, Au–Fe, Pt–WO
x
, Fe–Pd, Fe–Pt, Fe–Cu nanoparticles prepared by the redox procedure are considered to be most perspective in diverse catalytic applications because of the proper combination of the particle size and the electronic state of the metals.
Collapse
|
26
|
Shaikh MN, Aziz MA, Yamani ZH. Facile hydrogenation of cinnamaldehyde to cinnamyl ether by employing a highly re-usable “dip-catalyst” containing Pt nanoparticles on a green support. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00973c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the fabrication of a ‘dip-catalyst’ based on Pt nanoparticles on jute stalks as a green support and its catalytic application in cinnamyl alkyl ether synthesis.
Collapse
Affiliation(s)
- M. Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| | - Zain H. Yamani
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| |
Collapse
|