1
|
Hu ZJ, Luan XL, Cui YY, Yang CX. Novel phenazine-based microporous organic network for selective and sensitive determination of trace sulfonamides in milk samples. Anal Chim Acta 2024; 1326:343138. [PMID: 39260916 DOI: 10.1016/j.aca.2024.343138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Sulfonamide (SA) residues in food of animal origin possess a potential threat to human health and environment. However, due to the polar and ionic characteristics and trace level of SAs and the complexity of food matrices, direct measurement of SAs in these samples is still very difficult. Development of efficient sample pretreatment method for sensitive and selective extraction of trace SAs is of great significance and urgently desired. Therefore, rational design and synthesizing advanced and selective extractants is quite important. RESULTS In this work, a novel phenazine-based microporous organic network (MON) named TEPM-DP is reasonably synthesized and employed as a packing material for selective solid phase extraction (SPE) and sensitive determination of four typical SAs in milk samples. Phenazine-based monomer with aromatic and heteroaromatic ring and numerous N atoms is chosen to construct TEPM-DP adsorbent to provide π-π, hydrogen bonding, hydrophobic, and electrostatic extraction sites for SAs. The proposed method owns wide linear ranges, low limits of detection, high enrichment factors, and good precisions and recoveries for SAs in complex milk samples. The recoveries of SAs on TEPM-DP are much higher than those of commercial C18 and activated carbon. The extraction mechanisms are also elucidated via FT-IR, XPS, and comparative experiments. SIGNIFICANCE This work reports the first example of design and synthesizing phenazine-based MON in SPE via a simple and rapid solvothermal method. The results reveal the great prospects of TEPM-DP for enriching polar and ionic SAs in complex samples and uncover the potency of phenazine-based MON in sample pretreatment, which will promote the development of MON.
Collapse
Affiliation(s)
- Zhao-Jun Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiao-Lin Luan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Lin Q, Yusran Y, Xing J, Li Y, Zhang J, Su T, Yang L, Suo J, Zhang L, Li Q, Wang H, Fang Q, Li ZT, Zhang DW. Structural Conjugation Tuning in Covalent Organic Frameworks Boosts Charge Transfer and Photocatalysis Performances. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5869-5880. [PMID: 38277475 DOI: 10.1021/acsami.3c16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Qihan Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yusran Yusran
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
- Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiabin Xing
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yongsheng Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Jiangshan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Tianhui Su
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Lingyi Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Jinquan Suo
- Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Liming Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Qianrong Fang
- Department of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
3
|
3-D nitrogen-doped carbon cage encapsulated ultrasmall MoC nanoparticles for promoting simultaneous ZnIn 2S 4 photocatalytic hydrogen generation and organic wastewater degradation. J Colloid Interface Sci 2023; 635:59-71. [PMID: 36577356 DOI: 10.1016/j.jcis.2022.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Simultaneous redox reactions on photocatalysts make it possible to use wastewater for hydrogen production. The controlled synthesis of ultrasmall metal carbides effectively enhances the photocatalytic efficiency under this system. Here, we report a new type of cocatalyst in which a three-dimensional (3-D) nitrogen-doped carbon cage (NGC) of metal-organic framework derivatives encapsulates ultrasmall MoC nanoparticles (MoC@NGC), promoting simultaneous degradation of organic pollutants and hydrogen production by ZnIn2S4 (ZIS). Characterization analyses showed that MoC accelerated the separation of the photogenerated carrier and effectively reduced the overpotential of hydrogen evolution, while NGC promoted the good dispersion of MoC particles and provided sufficient sites. The MoC@NGC/ZIS composite exhibited a high hydrogen (H2) evolution rate of 1012 µmol g-1h-1, which exceed that of ZIS loaded with platinum. In the coupled system, where the electron donor was replaced with rhodamine B (RhB), the mechanism analysis showed that RhB and the as-generated intermediates consumed holes and facilitated hydrogen evolution. In addition, we designed a combined photocatalytic anoxic and oxic sequence process to achieve the recovery of hydrogen energy during the treatment of dye wastewater. This study provides a new way for cooperation between energy development and environmental protection.
Collapse
|
4
|
Liu L, Dong K, Hassan M, Gong W, Cui J, Ning G. Incorporation of carbazole and boron-containing dye into conjugated microporous polymers with significant aerobic oxidative photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions. Chem Asian J 2021; 16:3985-3992. [PMID: 34652071 DOI: 10.1002/asia.202100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks (MOFs) consisting of organic radicals are of great interest because they have exhibited unique and intriguing optical, electronic, magnetic, and chemo-catalytic properties, and thus have demonstrated great potential applications in optical, electronic, and magnetic devices, and as catalysts. However, the preparation of MOFs bearing stable organic radicals is very challenging because most organic radicals are highly reactive and difficult to incorporate into the framework of MOFs. Herein we reported a post-synthetic modification strategy to prepare a novel MOF containing phenazine radical cations, which was used as heterogeneous catalyst for aza-Diels-Alder reaction. The zinc-based metal-organic framework Zn2 (PHZ)2 (dabco) (N) was successfully synthesized from 5,10-di(4-benzoic acid)-5,10-dihydrophenazine (PHZ), triethylene diamine (dabco) with Zn(NO3 )2 ⋅ 6H2 O by solvothermal method. The as-synthesized MOF N was partially oxidized by AgSbF6 to form MOF R containing ∼10% phenazine radical cation species. The resultant MOF R was found to keep the original crystal type of N and very persistent under ambient conditions. Consequently, MOF R was successfully employed in radical cation-catalyzed aza-Diels-Alder reactions with various imine substrates at room temperature with high reaction conversion. Moreover, heterogeneous catalyst MOF R was reusable up to five times without much loss of catalytic activity, demonstrating its excellent stability and recyclability. Therefore, the post-synthetic modification developed in this work is expected to become a versatile strategy to prepare radical-based MOFs for the application of heterogeneous catalysts in organic synthesis.
Collapse
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ye-Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
6
|
Wang Y, Wang H, Meng P, Song D, Qi Z, Zhang X. Fe
2
Mn
(
μ
3
‐O
)(
COO
)
6
Cluster Based Stable
MOF
for Oxidative Coupling of Amines via Heterometallic Synergy. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying‐Xia Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
| | - Hui‐Min Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
| | - Pan Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
| | - Dong‐Xia Song
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
| | - Zhikai Qi
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
| | - Xian‐Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science Shanxi Normal University Linfen Shanxi 041004 China
- College of Chemistry & Chemical Engineering Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, No. 79 Yingze West Taiyuan Shanxi 030024 China
| |
Collapse
|
7
|
Gong W, Dong K, Liu L, Hassan M, Ning G. β-Diketone boron difluoride dye-functionalized conjugated microporous polymers for efficient aerobic oxidative photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00384d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new conjugated microporous polymers, TPB-B-CMP and TPA-B-CMP, with β-diketone-boron difluoride dye as the key building block were designed and successfully prepared. They were further employed as efficient metal-free heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Weitao Gong
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Kaixun Dong
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Lu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Mehdi Hassan
- Department of Chemistry
- University of Baltistan
- Skardu
- Pakistan
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
8
|
Unglaube F, Hünemörder P, Guo X, Chen Z, Wang D, Mejía E. Phenazine Radical Cations as Efficient Homogeneous and Heterogeneous Catalysts for the Cross‐Dehydrogenative Aza‐
Henry
Reaction. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Felix Unglaube
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Paul Hünemörder
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Xuewen Guo
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Zixu Chen
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Dengxu Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Esteban Mejía
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| |
Collapse
|