1
|
Araújo TP, Mitchell S, Pérez-Ramírez J. Design Principles of Catalytic Materials for CO 2 Hydrogenation to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409322. [PMID: 39300859 DOI: 10.1002/adma.202409322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Heterogeneous catalysts are essential for thermocatalytic CO2 hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits. This perspective introduces generalized design principles for catalytic materials in CO2-to-methanol conversion, illustrating how complex architectures with improved functionality can be assembled from simple components (e.g., active phases, supports, and promoters). After reviewing basic concepts in CO2-based methanol synthesis, engineering principles are explored, building in complexity from single to binary and ternary systems. As active nanostructures are complex and strongly depend on their reaction environment, recent progress in operando characterization techniques and machine learning approaches is examined. Finally, common design rules centered around symbiotic interfaces integrating acid-base and redox functions and their role in performance optimization are identified, pinpointing important future directions in catalyst design for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
3
|
Ziemba M, Weyel J, Zeller P, Welzenbach J, Efimenko A, Hävecker M, Hess C. Importance of Metal-Support Interactions for CO 2 Hydrogenation: An Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study on Gold-Loaded In 2O 3 and CeO 2 Catalysts. J Phys Chem Lett 2024:4928-4932. [PMID: 38686678 DOI: 10.1021/acs.jpclett.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Metal-support interactions, which are essential for the design of supported metal catalysts, used, e.g., for CO2 activation, are still only partially understood. In this study of gold-loaded In2O3 and CeO2 catalysts during CO2 hydrogenation using near-ambient pressure X-ray photoelectron spectroscopy, supported by near edge X-ray absorption fine structure, we demonstrate that the role of the noble metal strongly depends upon the choice of the support material. Temperature-dependent analyses of X-ray photoelectron spectra under reaction conditions reveal that gold is reduced on CeO2, enabling direct H2 activation, but oxidized on In2O3, leading to decreased activity of Au/In2O3 compared to bare In2O3. At elevated temperatures, the catalytic activity of the In2O3 catalysts strongly increases as a result of facilitated CO2 and (In2O3-based) H2 activation, while the catalytic activity of Au/CeO2 is limited by reoxidation by CO2. Our results underline the importance of operando studies for understanding metal-support interactions to enable a rational support selection in the future.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Jakob Weyel
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Patrick Zeller
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jan Welzenbach
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Anna Efimenko
- Interface Design, BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael Hävecker
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Liu L, Mezari B, Kosinov N, Hensen EJM. Al Promotion of In 2O 3 for CO 2 Hydrogenation to Methanol. ACS Catal 2023; 13:15730-15745. [PMID: 38125979 PMCID: PMC10728901 DOI: 10.1021/acscatal.3c04620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
In2O3 is a promising catalyst for the hydrogenation of CO2 to methanol, relevant to renewable energy storage in chemicals. Herein, we investigated the promoting role of Al on In2O3 using flame spray pyrolysis to prepare a series of In2O3-Al2O3 samples in a single step (0-20 mol % Al). Al promoted the methanol yield, with an optimum being observed at an Al content of 5 mol %. Extensive characterization showed that Al can dope into the In2O3 lattice (maximum ∼ 1.2 mol %), leading to the formation of more oxygen vacancies involved in CO2 adsorption and methanol formation. The rest of Al is present as small Al2O3 domains at the In2O3 surface, blocking the active sites for CO2 hydrogenation and contributing to higher CO selectivity. At higher Al content (≥10 mol % Al), the particle size of In2O3 decreases due to the stabilizing effect of Al2O3. Nevertheless, these smaller particles are prone to sintering during CO2 hydrogenation since they appear to be more easily reduced. These findings show subtle effects of a structural promoter such as Al on the reducibility and texture of In2O3 as a CO2 hydrogenation catalyst.
Collapse
Affiliation(s)
- Liang Liu
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Wu X, Zhao W, Hu Y, Xiao G, Ni H, Ikeda S, Ng Y, Jiang F. Research on the Influence of the Interfacial Properties Between a Cu 3 BiS 3 Film and an In x Cd 1- x S Buffer Layer for Photoelectrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204029. [PMID: 36253117 PMCID: PMC9685470 DOI: 10.1002/advs.202204029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The ternary compound photovoltaic semiconductor Cu3 BiS3 thin film-based photoelectrode demonstrates a quite promising potential for photoelectrochemical hydrogen evolution. The presented high onset potential of 0.9 VRHE attracts much attention and shows that the Cu3 BiS3 thin films are quite good as an efficient solar water splitting photoelectrode. However, the CdS buffer does not fit the Cu3 BiS3 thin film: the conduction band offset between CdS and Cu3 BiS3 reaches 0.7 eV, and such a high conduction band offset (CBO) significantly increases the interfacial recombination ratio and is the main reason for the relatively low photocurrent of the Cu3 BiS3 /CdS photoelectrode. In this study, the Inx Cd1- x S buffer layer is found to be significantly lowered the CBO of CBS/buffer and that the In incorporation ratio of the buffer influences the CBO value of the CBS/buffer. The Pt-TiO2 /In0.6 Cd0.4 S/Cu3 BiS3 photocathode exhibits an appreciable photocurrent density of ≈12.20 mA cm-2 at 0 VRHE with onset potential of more than 0.9 VRHE , and the ABPE of the Cu3 BiS3 -based photocathode reaches the highest value of 3.13%. By application of the In0.6 Cd0.4 S buffer, the Cu3 BiS3 -BiVO4 tandem cell presents a stable and excellent unbiased STH of 2.57% for over 100 h.
Collapse
Affiliation(s)
- Xiaomin Wu
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
| | - Weidong Zhao
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
| | - Yucheng Hu
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
| | - Guohong Xiao
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
| | - Huanyang Ni
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
| | - Shigeru Ikeda
- Department of ChemistryKonan University9‐1 Okamoto, HigashinadaKobeHyogo658–8501Japan
| | - Yunhau Ng
- School of Energy and EnvironmentCity University of Hong KongKowloonHong Kong999077China
| | - Feng Jiang
- Institute of Hydrogen Energy for Carbon Peaking and Carbon NeutralizationSchool of Semiconductor Science and TechnologySouth China Normal UniversityFoshan528225China
- Institute of Semiconductor Science and TechnologySouth China Normal University55 Zhongshan Avenue West, Tianhe DistrictGuangzhou510631China
- Key Laboratory of Polar Materials and DevicesMinistry of EducationEast China Normal UniversityInformation Building, 500 Dongchuan RoadShanghai200241China
| |
Collapse
|
7
|
|
8
|
Zhang X, Kirilin AV, Rozeveld S, Kang JH, Pollefeyt G, Yancey DF, Chojecki A, Vanchura B, Blum M. Support Effect and Surface Reconstruction in In 2O 3/ m-ZrO 2 Catalyzed CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqiang Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Steve Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Joo H. Kang
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Glenn Pollefeyt
- Packaging & Specialty Plastics and Hydrocarbons R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - David F. Yancey
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Adam Chojecki
- Core R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - Britt Vanchura
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
In Situ NAP-XPS Study of CO2 and H2O Adsorption on cerium oxide thin films. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zhang W, Huang C, Zhu J, Zhou Q, Yu R, Wang Y, An P, Zhang J, Qiu M, Zhou L, Mai L, Yi Z, Yu Y. Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO
2
Reduction to Hydrocarbons**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Zhang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Chuqiang Huang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Qiancheng Zhou
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Yali Wang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100049 P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100049 P. R. China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Zhiguo Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Ying Yu
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| |
Collapse
|
11
|
Zhang W, Huang C, Zhu J, Zhou Q, Yu R, Wang Y, An P, Zhang J, Qiu M, Zhou L, Mai L, Yi Z, Yu Y. Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO 2 Reduction to Hydrocarbons*. Angew Chem Int Ed Engl 2021; 61:e202112116. [PMID: 34704659 DOI: 10.1002/anie.202112116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Indexed: 01/24/2023]
Abstract
The electrochemical reduction of CO2 to hydrocarbons involves a multistep proton-coupled electron transfer (PCET) reaction. Second coordination sphere engineering is reported to be effective in the PCET process; however, little is known about the actual catalytic active sites under realistic operating conditions. We have designed a defect-containing metal-organic framework, HKUST-1, through a facile "atomized trimesic acid" strategy, in which Cu atoms are modified by unsaturated carboxylate ligands, producing coordinatively unsaturated Cu paddle wheel (CU-CPW) clusters. We investigate the dynamic behavior of the CU-CPW during electrochemical reconstruction through the comprehensive analysis of in situ characterization results. It is demonstrated that Cu2 (HCOO)3 is maintained after electrochemical reconstruction and that is behaves as an active site. Mechanistic studies reveal that CU-CPW accelerates the proton-coupled multi-electron transfer (PCMET) reaction, resulting in a deep CO2 reduction reaction.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Chuqiang Huang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Qiancheng Zhou
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Yali Wang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Zhiguo Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ying Yu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| |
Collapse
|