1
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Ng LS, Chong C, Lok XY, Pereira V, Ang ZZ, Han X, Li H, Lee HK. Dynamic Liquid-Liquid Interface: Applying a Spinning Interfacial Microreactor to Actively Converge Biphasic Reactants for the Enhanced Interfacial Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45005-45012. [PMID: 36162132 DOI: 10.1021/acsami.2c12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A liquid-liquid interfacial reaction combines reactants with large polarity disparity to achieve greener and more efficient chemistry that is otherwise challenging in traditional single-phase systems. However, current interfacial approaches suffer from the need for a large amount of solvent/reactant/emulsifier and poor reaction performance arising from intrinsic thermodynamic constraints. Herein, we achieve an efficient interfacial reaction by creating a magnetic-responsive, microscale liquid-liquid interface and exploit its dynamic spinning motion to generate vortex-like hydrodynamic flows that rapidly converge biphasic reactants to the point-of-reaction. Notably, the spinning of this functional interface at 800 rpm boosts the reaction efficiency and its apparent equilibrium constant by > 500-fold and 105-fold, respectively, higher than conventional methods that utilize bulk and/or non-dynamic liquid interfaces, even with external mechanical stirring. By driving reaction equilibrium toward favorable product formation, our unique design offers enormous opportunities to realize efficient multiphasic reactions crucial for diverse applications in chemical synthesis, environmental remediation, and even molecular recycling.
Collapse
Affiliation(s)
- Li Shiuan Ng
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Yi Lok
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Veronica Pereira
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
3
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
4
|
Suzuki R, Yamauchi Y, Sugahara Y. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials. Dalton Trans 2022; 51:13145-13156. [PMID: 35997213 DOI: 10.1039/d2dt01557a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, various inorganic material-based Janus nanosheets have been prepared and their applications have been proposed. Inorganic material-based Janus nanosheets have various advantages over polymer-based Janus nanosheets, including the maintenance of their characteristic two-dimensional shape, and are expected to be applied as unique functional materials. Methods for regioselective functionalization of the two sides of the individual nanosheets are extremely important for the development of inorganic material-based Janus nanosheets. In this review, the preparation methods and applications of inorganic material-based Janus nanosheets are summarized from the point of view of inorganic nanosheet functionalization.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,Nikon Corporation, 1-10-1, Asamizodai, Minami-ku, Sagamihara, Kanagawa 252-0328, Japan
| | - Yusuke Yamauchi
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
7
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
8
|
Zvaigzne M, Samokhvalov P, Gun'ko YK, Nabiev I. Anisotropic nanomaterials for asymmetric synthesis. NANOSCALE 2021; 13:20354-20373. [PMID: 34874394 DOI: 10.1039/d1nr05977g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yurii K Gun'ko
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, 51 rue Cognacq Jay, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
9
|
Hao Y, Hao S, Li Q, Liu X, Zou H, Yang H. Metal-Nanoparticles-Loaded Ultrathin g-C 3N 4 Nanosheets at Liquid-Liquid Interfaces for Enhanced Biphasic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47236-47243. [PMID: 34553905 DOI: 10.1021/acsami.1c13903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploiting new interface-active solid catalysts is crucial to construct efficient Pickering emulsion systems for biphasic catalysis. In this work, ultrathin g-C3N4 nanosheets (g-C3N4-NSs) were developed as a new solid emulsifier to directly position catalytic sites at oil-water interfaces for improving the reaction efficiency of a biphasic reaction. Exemplified by a metal-involved biphasic reaction of nitroarenes reduction, the developed Pd/g-C3N4-NSs catalyst with Pd nanoparticles loaded on the surface of g-C3N4-NSs exhibited excellent activity with a catalytic efficiency of 1220 h-1. Such activity was 4.2 and 17.9 times higher than those of Pd/g-C3N4-bulk and the ordinary Pd/C8-SiO2 catalyst, respectively. Also, in the biphasic oxidation reaction of alcohols, Pd/g-C3N4-NSs achieved a 2.3-fold activity enhancement. It was found by analyzing the solidified emulsion droplets that the Pd/g-C3N4-NSs catalyst was parallelly assembled at the oil-water interfaces. Because of the ultrathin thickness of g-C3N4-NSs, such a unique interfacial assembly behavior allowed precise positioning of Pd nanoparticles at the oil-water interfaces. As a result, the oil-soluble reactant could directly react with the water-soluble reactant at the oil-water interface hosting the Pd nanoparticles. Our elaborately designed reaction interface was believed to substantially avoid the diffusion barrier between oil-soluble and water-soluble reactants and then to significantly enhance the reactivity of biphasic reactions. This work highlights the importance of the interfacial location of catalytic sites in biphasic catalysis.
Collapse
Affiliation(s)
- Yajuan Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shijiao Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qibiao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xian Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|