1
|
Casey É, Breen R, Gómez JS, Kentgens APM, Pareras G, Rimola A, Holmes JD, Collins G. Ligand-Aided Glycolysis of PET Using Functionalized Silica-Supported Fe 2O 3 Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15544-15555. [PMID: 37920799 PMCID: PMC10618922 DOI: 10.1021/acssuschemeng.3c03585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023]
Abstract
The development of efficient catalysts for the chemical recycling of poly(ethylene terephthalate) (PET) is essential to tackling the global issue of plastic waste. There has been intense interest in heterogeneous catalysts as a sustainable catalyst system for PET depolymerization, having the advantage of easy separation and reuse after the reaction. In this work, we explore heterogeneous catalyst design by comparing metal-ion (Fe3+) and metal-oxide nanoparticle (Fe2O3 NP) catalysts immobilized on mesoporous silica (SiO2) functionalized with different N-containing amine ligands. Quantitative solid-state nuclear magnetic resonance (NMR) spectroscopy confirms successful grafting and elucidates the bonding mode of the organic ligands on the SiO2 surface. The surface amine ligands act as organocatalysts, enhancing the catalytic activity of the active metal species. The Fe2O3 NP catalysts in the presence of organic ligands outperform bare Fe2O3 NPs, Fe3+-ion-immobilized catalysts and homogeneous FeCl3 salts, with equivalent Fe loading. X-ray photoelectron spectroscopy analysis indicates charge transfer between the amine ligands and Fe2O3 NPs and the electron-donating ability of the N groups and hydrogen bonding may also play a role in the higher performance of the amine-ligand-assisted Fe2O3 NP catalysts. Density functional theory (DFT) calculations also reveal that the reactivity of the ion-immobilized catalysts is strongly correlated to the ligand-metal binding energy and that the products in the glycolysis reaction catalyzed by the NP catalysts are stabilized, showing a significant exergonic character compared to single ion-immobilized Fe3+ ions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Rachel Breen
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Jennifer S. Gómez
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Gerard Pareras
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Albert Rimola
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Justin. D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
2
|
Xie S, Li Z, Li H, Fang Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: chemistry, challenges, and opportunities. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Hengde Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Casey É, Holmes JD, Collins G. PdAu Nanosheets for Visible-Light-Driven Suzuki Cross-Coupling Reactions. ACS APPLIED NANO MATERIALS 2022; 5:16196-16206. [PMID: 36466303 PMCID: PMC9706499 DOI: 10.1021/acsanm.2c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Combining a two-dimensional (2D) morphology and plasmonic photocatalysis represents an efficient design for light-driven organic transformations. We report a one-pot synthesis of surfactant templated PdAu nanosheets (NSs). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses show the formation of 2D PdAu structures was initiated through nanoparticle seeds dispersed in the alkyl ammonium salt surfactant which acted as a template for the growth into NSs. The PdAu NSs were used for visible-light-enhanced Suzuki cross coupling. The PdAu bimetallic NSs outperformed monometallic Pd NSs and commercial Pd/C in room-temperature Suzuki cross-coupling reactions. The high catalytic activity is attributed to a combination of the 2D morphology giving rise to plasmon-enhanced catalysis and a high density of surface atoms, the electron-rich Pd surface due to alloying, and the presence of weakly bound amines. A comparative study of surfactant-assisted NSs and CO-assisted NSs was also carried out to assess the influence of surface ligands on the catalytic and photocatalytic enhancement of NSs with similar morphology. The surfactant-assisted NSs showed substantially superior performance compared to the CO-assisted for room-temperature Suzuki coupling reactions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Justin D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
4
|
Pandey M, Tsunoji N, Kubota Y, Bandyopadhyay M. Amine and Sulfonic Acid Anchored Porous Silica as Recyclable Heterogeneous Catalysts for Ring‐Opening of Oxiranes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madhu Pandey
- Dpartment of Basic Sciences Institute of Infrastructure, Technology Research and Management, Maninagar Ahmedabad 380026 Gujarat India
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering Hiroshima University Higashi-Hiroshima 739-852 Japan
| | - Yoshihiro Kubota
- Department of Material Science & Chemical Engineering Yokohama National University Yokohama Japan
| | - Mahuya Bandyopadhyay
- Dpartment of Basic Sciences Institute of Infrastructure, Technology Research and Management, Maninagar Ahmedabad 380026 Gujarat India
| |
Collapse
|
5
|
Platinum deposited on 2D and 3D mesoporous silica materials for the catalytic oxidation of volatile organic compounds: The oxidation of m-xylene and methanol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|