1
|
Li J, Chen K, Lin L, Han S, Meng F, Hu E, Qin W, Gao Y, Jiang J. Product Selection Toward High-Value Hydrogen and Bamboo-Shaped Carbon Nanotubes from Plastic Waste by Catalytic Microwave Processing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14675-14686. [PMID: 39102504 DOI: 10.1021/acs.est.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The escalating levels of plastic waste and energy crises underscore the urgent need for effective waste-to-energy strategies. This study focused on converting polypropylene wastes into high-value products employing various iron-based catalysts and microwave radiative thermal processing. The Al-Fe catalysts exhibited exceptional performance, achieving a hydrogen utilization efficiency of 97.65% and a yield of 44.07 mmol/g PP. The gas yields increased from 19.99 to 94.21 wt % compared to noncatalytic experiments. Furthermore, this catalytic system produced high-value bamboo-shaped carbon nanotubes that were absent in other catalysts. The mechanism analysis on catalytic properties and product yields highlighted the significance of oxygen vacancies in selecting high-value products through two adsorption pathways. Moreover, the investigation examined the variations in product distribution mechanisms between conventional and microwave pyrolysis, in which microwave conditions resulted in 4 times higher hydrogen yields. The technoeconomic assessment and Monte Carlo risk analysis further compared the disparity. The microwave technique had a remarkable internal rate of return (IRR) of 39%, leading to an income of $577/t of plastic with a short payback period of 2.5 years. This research offered sustainable solutions for the plastic crisis, validating the potential applicability of commercializing the research outcomes in real-world scenarios.
Collapse
Affiliation(s)
- Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kailun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weikai Qin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Li T, Liu Q, Qi H, Zhai W. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204032. [PMID: 36180413 DOI: 10.1002/smll.202204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Four-dimensional (4D) printing enables programmable, predictable, and precise shape change of responsive materials to achieve desirable behaviors beyond conventional three-dimensional (3D) printing. However, applying 4D printing to ceramics remains challenging due to their intrinsic brittleness and inadequate stimuli-responsive ability. Here, this work proposes a conceptional combination of bioinspired microstructure design and a programmable prestrain approach for 4D printing of nanoceramics. To overcome the flexibility limitation, the bioinspired concentric cylinder structure in the struts of 3D printed lattices are replicated to develop origami nanoceramic composites with high inorganic content (95 wt%). Furthermore, 4D printing is achieved by applying a programmed prestrain to the printed lattices, enabling the desired deformation when the prestrain is released. Due to the bioinspired concentric cylinder microstructures, the printed flexible nanoceramic composites exhibit superior mechanical performance and anisotropic thermal management capability. Further, by introducing oxygen vacancies to the ceramic nanosheets, conductive nanoceramic composites are prepared with a unique sensing capability for various sensing applications. Hence, this research breaks through the limitation of ceramics in 4D printing and achieves high-performance shape morphing materials for applications under extreme conditions, such as space exploration and high-temperature systems.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
3
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
4
|
Wang D, Lin L, Zhang R, Mu R, Fu Q. Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. J Phys Chem Lett 2022; 13:6566-6570. [PMID: 35833718 DOI: 10.1021/acs.jpclett.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.
Collapse
Affiliation(s)
- Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
5
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Yamamoto M, Zhao Q, Goto S, Gu Y, Toriyama T, Yamamoto T, Nishihara H, Aziz A, Crespo-Otero R, Di Tommaso D, Tamura M, Tomishige K, Kyotani T, Yamazaki K. Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation. Chem Sci 2022; 13:3140-3146. [PMID: 35414888 PMCID: PMC8926170 DOI: 10.1039/d1sc06578e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth. Oxygen vacancies on the (100) surface of γ-Al2O3 nanoparticles catalyse CH4-CVD for single-layered nanoporous graphenes with no transition metal reaction centre. The rate-limiting step is the proton transfer (PT) in the activation of CH4 on them.![]()
Collapse
Affiliation(s)
- Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Yu Gu
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Alex Aziz
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Masazumi Tamura
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
7
|
Castro-Fernández P, Mance D, Liu C, Abdala PM, Willinger E, Rossinelli A, Serykh AI, Pidko EA, Copéret C, Fedorov A, Müller CR. Bulk and Surface Transformations of Ga2O3 Nanoparticle Catalysts for Propane Dehydrogenation Induced by a H2 Treatment. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Castro-Fernández P, Kaushik M, Wang Z, Mance D, Kountoupi E, Willinger E, Abdala PM, Copéret C, Lesage A, Fedorov A, Müller CR. Uncovering selective and active Ga surface sites in gallia-alumina mixed-oxide propane dehydrogenation catalysts by dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2021; 12:15273-15283. [PMID: 34976347 PMCID: PMC8635172 DOI: 10.1039/d1sc05381g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance. Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.![]()
Collapse
Affiliation(s)
| | - Monu Kaushik
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Zhuoran Wang
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Evgenia Kountoupi
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Anne Lesage
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| |
Collapse
|
9
|
Xu Y, Yu W, Zhang H, Xin J, He X, Liu B, Jiang F, Liu X. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Wenda Yu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Hao Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| |
Collapse
|
10
|
Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal11091070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.
Collapse
|