1
|
He H, Ma Z, Zhang S, Cai A, Ye H, Fan X, Peng W, Li Y. Boosting Suzuki coupling reaction via pore expanding and palladium-zinc alloying. J Colloid Interface Sci 2024; 679:152-160. [PMID: 39362140 DOI: 10.1016/j.jcis.2024.09.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
A palladium-zinc alloy nanoparticles decorated nitrogen-doped porous carbon catalyst (PdZn30-NC) was synthesized and utilized for Suzuki coupling reaction. The alloying palladium (Pd) with zinc (Zn) and pore expanding are realized simultaneously. Density functional theory (DFT) calculations and experimental studies reveal that the alloying Pd with Zn can lower the energy barrier in Suzuki coupling reaction. Nitrogen adsorption-desorption measurements uncover that pore expansion caused by the zinc nitrate hexahydrate assisted calcination gives rise to the multiplication of mesopore with a pore diameter of 6 nm, which facilitates mass transfer during the reaction. As a result, the alloying Pd with Zn and pore expanding together endow PdZn30-NC with excellent catalytic activity. PdZn30-NC demonstrates exceptional catalytic activity and stability in Suzuki coupling reaction. A high biphenyl yield of 97.7 % within 40 min and stable reusability of 93.3 % yield after five reuse cycles can be achieved. This work not only offers a viable method for Suzuki coupling reaction, but also provides insights for designing new catalysts toward Suzuki coupling reaction.
Collapse
Affiliation(s)
- Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Zhoulin Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Shuya Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - An Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Huan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China.
| |
Collapse
|
2
|
He J, Chen S, Ma Z, Wang M, He Q. Spatial Identification of Mott-Schottky Effect at Electrocatalytic Pd/Metal Oxide Interfaces for the Oxygen Reduction Reaction. ACS NANO 2024; 18:24283-24294. [PMID: 39163576 DOI: 10.1021/acsnano.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
To elucidate the microstructure and charge transfer behavior at the interface of Pd/metal oxide semiconductor (MOS) catalysts and systematically explore the crucial role of the Mott-Schottky effect in the oxygen reduction reaction (ORR) electrocatalysis process, this study established a testing system for spatially identifying Mott-Schottky effects and electronic properties at Pd/MOS interfaces, leveraging highly sensitive Kelvin probe force microscopy (KPFM). This system enabled visualization and quantification of the surface potential difference and Mott-Schottky barrier height (ΦSBH) at the Pd/MOS heterojunction interfaces. Furthermore, a series of Pd/MOS Mott-Schottky catalysts were constructed based on differences in work functions between Pd and n-type MOS. The abundant oxygen vacancies in these catalysts facilitated the adsorption and activation of oxygen molecules. Notably, the intensity of the built-in electric field in the Pd/MOS Mott-Schottky catalysts was calculated through surface potential and zeta potential analysis, systematically correlating the Mott-Schottky effect at the heterojunction interface of Pd/MOS with ORR activity and kinetics. By comprehensively exploring the correlation between the Mott-Schottky effect and ORR performance in Pd/MOS catalysts using the KPFM testing system, this study provides necessary tools and approaches for a deep understanding of heterogeneous interface charge transfer mechanisms, as well as for optimizing catalyst design and enhancing ORR performance.
Collapse
Affiliation(s)
- Jing He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiyuan Chen
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhuang Ma
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Abuduhelili A, Chen R, Sun J, Bu Y, Yin D, Li G, Meng X, Zeng J. Oxygen Vacancy-Enriched CoFe 2O 4 for Electrochemically Sensitive Detection of the Breast Cancer CD44 Biomarker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14583-14593. [PMID: 38967629 DOI: 10.1021/acs.langmuir.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Enhancing the selectivity of detection methods is essential to distinguish breast cancer biomarker cluster of differentiation 44 (CD44) from other species and reduce false-positive or false-negative results. Here, oxygen vacancy-enriched CoFe2O4 (CoFe2O4-x) was crafted, and its implementation as an electrochemical electrode for the detection of CD44 biomarkers has been scrutinized. This unique electrode material offers significant benefits and novel features that enhance the sensitivity and selectivity of the detection process. The oxygen vacancy density of CoFe2O4-x was tuned by adjusting the mass ratios of iron to cobalt precursors (iron-cobalt ratio) and changing annealing atmospheres. Electrochemical characterization reveals that, when the iron-cobalt ratio is 1:0.54 and the annealing atmosphere is nitrogen, the as-synthesized CoFe2O4-x electrode manifests the best electrochemical activity. The CoFe2O4-x electrode demonstrates high sensitivity (28.22 μA (ng mL)-1 cm-2), low detection limit (0.033 pg mL-1), and robust stability (for 11 days). Oxygen vacancies can not only enhance the conductivities of CoFe2O4 but also provide better adsorption of -NH2, which is beneficial for stability and electrochemical detection performance. The electrochemical detection signal can be amplified using CoFe2O4-x as a signal probe. Additionally, it is promising to know that the CoFe2O4-x electrode has shown good accuracy in real biological samples, including melanoma cell dilutions and breast cancer patient sera. The electrochemical detection results are comparable to ELISA results, which indicates that the CoFe2O4-x electrode can detect CD44 in complex biological samples. The utilization of CoFe2O4-x as the signal probe may expand the application of CoFe2O4-x in biosensing fields.
Collapse
Affiliation(s)
- Abudulitifujiang Abuduhelili
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| | - Rongling Chen
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| | - Jian Sun
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| | - Yingchun Bu
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| | - Dongfeng Yin
- Department of Pharmacy, General Hospital of Xinjiang Military Command, PLA, Urumqi, Xinjiang 830001, PR China
| | - Gairu Li
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| | - Xiangtong Meng
- State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinfeng Zeng
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang 830001, PR China
| |
Collapse
|
4
|
Wei Y, Pan J, Yan X, Mao Y, Zhang Y. Electron Structure Tuned Oxygen Vacancy-Rich AuPd/CeO 2 for Enhancing 5-Hydroxymethylfurfural Oxidation. CHEMSUSCHEM 2024; 17:e202400241. [PMID: 38494446 DOI: 10.1002/cssc.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The design of high activity catalyst for the efficiently conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) gains great interest. The rationally tailoring of electronic structure directly affects the interaction between catalysts and organic substrates, especially molecular oxygen as the oxidant. This work, the bimetallic catalysts AuPd/CeO2 were prepared by the combining method of chemical reduction and photo-deposition, effectively concerting charge between Au and Pd and forming the electron-rich state of Au. The increasing of oxygen vacancy concentration of CeO2 by acidic treatment can facilitate the adsorption of HMF for catalysts and enhance the yield of FDCA (99.0 %). Moreover, a series of experiment results combining with density functional theory calculation illustrated that the oxidation performance of catalyst in HMF conversion was strongly related to the electronic state of interfacial Au-Pd-CeO2. Furthermore, the electron-rich state sites strengthen the adsorption and activation of molecular oxygen, greatly promoting the elimination of β-hydride for the selective oxidation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FDCA, accompanied with an outgoing FDCA formation rate of 13.21 mmol ⋅ g-1 ⋅ min-1 at 80 °C. The perception exhibited in this research could be benefit to understanding the effects of electronic state for interfacial sites and designing excellent catalysts for the oxidation of HMF.
Collapse
Affiliation(s)
- Yanan Wei
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213159, PR China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xu Yan
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 466002, PR China
| | - Yanli Mao
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 466002, PR China
| | - Yunlei Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
5
|
Su Y, Li Y, Li C, Xu T, Sun Y, Bai J. Robust C-PdNi-CNF Sandwich-Structured Catalyst for Suzuki Reactions and Experimental Study on the Mechanism. ACS OMEGA 2022; 7:29747-29754. [PMID: 36061694 PMCID: PMC9434786 DOI: 10.1021/acsomega.2c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The stability of metal nanoparticles is one of the key issues for their catalytic applications. In this study, we fabricated a sandwich structure to protect the metal nanoparticles. A carbon layer was used to wrap the PdNi nanoparticles on the carbon fiber, and the whole preparation process was simple and green. Electron transfer occurs between the carbon layer and the metal nanoparticles, making the two more closely combined. As a catalyst for the Suzuki reaction, it exhibits highly efficient catalysis and excellent stability. The calculated TOF reaches 18 662 h-1. After nine cycles, there was almost no decrease in performance. Additionally, we found that the addition of iodobenzene into the chlorobenzene reaction system could significantly improve the chlorobenzene conversion, and we proved that the catalyst has fine activity and stability with a bright future in commercial applications. The possible catalytic mechanism of Suzuki reaction was proposed based on experimental results. This study provides a simple and green method to prepare encapsulated metal nanoparticle catalysts and gives a deep insight into Suzuki reaction.
Collapse
Affiliation(s)
- Yu Su
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| | - Ying Li
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| | - Chunping Li
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| | - Tong Xu
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| | - Yinghui Sun
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| | - Jie Bai
- College
of Chemical Engineering, Inner Mongolia
University of Technology, Hohhot 010051, People’s Republic
of China
- Inner
Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, People’s Republic of China
| |
Collapse
|
6
|
Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wei Y, Zhang Y, Chen Y, Wang F, Cao Y, Guan W, Li X. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO 2 Catalysts for Efficient Oxidation of HMF to FDCA. CHEMSUSCHEM 2022; 15:e202101983. [PMID: 34644006 DOI: 10.1002/cssc.202101983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Developing an efficient catalyst to upgrade 5-hydroxymethylfurfural (HMF) to high-value-added downstream chemicals is of great significance in biomass conversion. Nanorod (110)-, nanocube (100)-, and nanooctaheron (111)-CeO2 -supported Au nanoparticles were prepared to investigate the intrinsic effect of CeO2 crystal faces on the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA). The experimental results and density functional theory calculation revealed that the concentration of oxygen vacancy (VO ) for exposed specific crystal faces was crucial to the oxygen adsorption ability, and Au/nanorod-CeO2 with the highest VO concentration promoted the formation of more oxygen active species (superoxide radical) on CeO2 (110) crystal face than (100) and (111) crystal faces. Besides, the higher VO concentration could provide a strong adsorption ability of HMF, greatly boosting the activation of HMF. Thus, these results led to a superior catalytic activity for HMF oxidation over Au/nanorod-CeO2 (FDCA yield of 96.5 %). In-situ Fourier-transform (FT)IR spectroscopy uncovered the HMF oxidation pathway, and the possible catalytic mechanism was proposed. The deep insight into the role of regulation for crystal faces provides a basis for the rational design of highly active facets for the oxidation of HMF and related reactions.
Collapse
Affiliation(s)
- Yanan Wei
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yunlei Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yao Chen
- School of the Environment and Safety, Jiangsu University, Zhenjiang, P. R. China
| | - Fang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yu Cao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen Guan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
8
|
Towards the Efficient Catalytic Valorization of Chitin to N-Acylethanolamine over Ni/CeO2 Catalyst: Exploring the Shape-Selective Reactivity. Catalysts 2022. [DOI: 10.3390/catal12050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Global warming and rising waste content collectively accelerate the development of renewable-derived ‘low-carbon’ chemical technologies. Among all abundant renewables, marine-/food-waste-derived chitin, the only nitrogen-containing sustainable biomass, contains the unique N-acetylglucosamine units, which could be synthetically manipulated to a plethora of organonitrogen chemicals. Herein, we report the efficient one-step catalytic valorization of chitin to N-acylethanolamine over cost-effective Ni/CeO2-based materials, which interestingly demonstrate shape-based reactivity based on CeO2 supports. In general, all three catalysts (Ni on cubic-, rod-, and polyhedral-shaped CeO2 supports) were active for this reaction, but they differed in their catalytic efficiency and time-monitored reaction profiles. Herein, Ni on cubic-shaped CeO2 delivered relatively better and stable catalytic performance, along with its rod-shaped counterpart, while the polyhedral CeO2-based material also delivered decent performance. Such interesting catalytic behavior has been corroborated by their physicochemical properties, as revealed by their characterization studies. Herein, to establish an appropriate structure-property-reactivity relationship, multimodal characterization techniques and control mechanistic experiments have been performed. This work demonstrates a concept to reduce the consumption of primary carbon resources and increase the utilization of secondary waste materials to facilitate a smooth transition from a linear economy (cf. cradle-to-grave model) to a circular economy (cf. cradle-to-cradle model).
Collapse
|
9
|
The lanthanide doping effect on toluene catalytic oxidation over Pt/CeO 2 catalyst. J Colloid Interface Sci 2022; 614:33-46. [PMID: 35085902 DOI: 10.1016/j.jcis.2022.01.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/19/2023]
Abstract
The present work was undertaken to know the lanthanide doping effect on the physicochemical properties of Pt/CeO2 catalysts and their catalytic activity for toluene oxidation. A series of lanthanide ions (La, Pr, Nd, Sm and Gd) were incorporated into ceria lattice by hydrothermal method, and the Pt nanoparticles with equal quality were successfully loaded on various ceria-based supports. Their catalytic performance toward toluene oxidation shows a remarkable lanthanide-doping effect, and the activity is much dependent on the ion radius and valence state of dopants. Owing to smaller ion radius and low valence state, the dopant of Gd would form more Gd-Ce complex and less GdO8-type complex, generating more oxygen vacancies and then promoting oxygen replenishment. Furthermore, the high concentration of oxygen vacancy would drive electrons to transfer from support to metal, and thus electron-rich and under-coordinated Pt particles that are favorable for toluene adsorption and dissociation are obtained. Attributing to above positive factors, the doping of Gd would effectively enhance the catalytic oxidation of toluene over Pt/CeO2 catalyst. In addition, the Pt/CeGdO2 sample exhibits an excellent reaction stability and resistance of concentration impact.
Collapse
|
10
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|