1
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
2
|
Yang C, Zhang J, Liu W, Cheng Y, Yang X, Wang W. Rational H 2 Partial Pressure over Nickel/Ceria Crystal Enables Efficient and Durable Wide-Temperature-Zone Air-Level CO 2 Methanation. Chemistry 2024:e202402516. [PMID: 39168823 DOI: 10.1002/chem.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
On the way to carbon neutrality, directly catalyzing atmospheric CO2 into high-value chemicals might be an effective approach to mitigate the negative impacts of rising airborne CO2 concentrations. Here, we pioneer the investigation of the influence of the H2/CO2 partial pressure ratio (PPR) on air-level CO2 methanation. Using Ni/CeO2 as a case catalyst, increasing H2/CO2 PPR significantly improves low-temperature CO2 conversion and high-temperature CH4 selectivity, i. e., from 10 of H2/CO2 PPR on, CO2 is completely methanized at 250 °C, and nearly 100 % CH4 selectivity is achieved at 400 °C. 100-hour stability tests demonstrate the practical application potential of Ni/CeO2 at 250 °C and 400 °C. In-situ DRIFTS reveal that reinforced formate pathway by increasing H2/CO2 PPR is responsible for the high CH4 yield. In contrast, even though the CO pathway dominated CO2 conversion on Ni is enhanced by rising H2/CO2 PPR, but at a high reaction temperature, the promoted CO desorption still leads to lower CH4 selectivity. This work offers deep insights into the direct air-level CO2 resourceization, contributing to the achievement of airborne CO2 reductions.
Collapse
Affiliation(s)
- Chaoyang Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junlei Zhang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiping Liu
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yao Cheng
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xueyi Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanglei Wang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Dyachenko A, Ischenko O, Pryhunova O, Gaidai S, Diyuk V, Goncharuk O, Mischanchuk O, Bonarowska M, Nikiforow K, Kaszkur Z, Hołdyński M, Lisnyak VV. NiFe and CoFe nanocatalysts supported on highly dispersed alumina-silica: Structure, surface properties, and performance in CO 2 methanation. ENVIRONMENTAL RESEARCH 2024; 255:119203. [PMID: 38782347 DOI: 10.1016/j.envres.2024.119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The hydrogenation of CO2 to CH4 has gained considerable interest in terms of sustainable energy and environmental mitigation. In this regard, the present work aims to investigate the adsorptive concentration and CO2 methanation performance over CoFe and NiFe bimetallic catalysts supported on fumed alumina-silica SA96 support at 170-450 °C and under atmospheric pressure. The catalysts were prepared by wet impregnation method, subjected to calcination and further reduced with hydrogen, and their performance in CO2 methanation was investigated in a hydrogen-rich 2%CO2-55%H2-43%He gas mixture. In this study, we describe the crystal and mesoporous structures of the prepared catalysts by in-situ XRD and ex-situ nitrogen adsorption, evaluate the NiFe and CoFe metal surface states before and after catalysis by XPS, visualize the surface morphology by SEM, estimate the catalytic activity by gas chromatography, and investigate the adsorbed surface species, showing the presence of *HCOO/*HCO and *CO intermediates, determine two possible pathways of CH4 formation on the studied catalysts by temperature-programmed desorption mass spectrometry, and correlate the structural and surface properties with high CO2 conversions up to 100% and methanation selectivities up to 72%. The latter is related to changes in the elemental chemical states and surface composition of CoFe and NiFe nanocatalysts induced by treatment under reaction conditions, and the surface reconstruction during catalysis transfers the part of active 3d transition metals into the pores of the SA96 support. Our thorough characterization study with complementary techniques allowed us to conclude that this high activity is related to the formation of catalytically active Ni/Ni3Fe and Co/CoFeOx nanoscale crystallites under H2 reduction and their maintenance under CO2 methanation conditions. The successfully applied combination of CO2 chemisorption and thermodesorption techniques demonstrates the ability to adsorb the CO2 molecules by supported NiFe and CoFe nanocatalysts and the pure alumina-silica SA96 support.
Collapse
Affiliation(s)
- Alla Dyachenko
- Institute of Physical Chemistry, PAS, Warsaw, Poland; Chuiko Institute of Surface Chemistry, NASU, Kyiv, Ukraine
| | - Olena Ischenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olha Pryhunova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Vitaliy Diyuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Goncharuk
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
4
|
Yang L, Pu T, Tian F, He Y, Zhu M. Revealing the anti-sintering phenomenon on silica-supported nickel catalysts during CO 2 hydrogenation. J Environ Sci (China) 2024; 140:270-278. [PMID: 38331507 DOI: 10.1016/j.jes.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 02/10/2024]
Abstract
The CO2 catalytic hydrogenation represents a promising approach for gas-phase CO2 utilization in a direct manner. Due to its excellent hydrogenation ability, nickel has been widely studied and has shown good activities in CO2 hydrogenation reactions, in addition to its high availability and low price. However, Ni-based catalysts are prone to sintering under elevated temperatures, leading to unstable catalytic performance. In the present study, various characterization techniques were employed to study the structural evolution of Ni/SiO2 during CO2 hydrogenation. An anti-sintering phenomenon is observed for both 9% Ni/SiO2 and 1% Ni/SiO2 during CO2 hydrogenation at 400°C. Results revealed that Ni species were re-dispersed into smaller-sized nanoparticles and formed Ni0 active species. While interestingly, this anti-sintering phenomenon leads to distinct outcomes for two catalysts, with a gradual increase in both reactivity and CH4 selectivity for 9% Ni/SiO2 presumably due to the formation of abundant surface Ni° from redispersion, while an apparent decreasing trend of CH4 selectivity for 1% Ni/SiO2 sample, presumably due to the formation of ultra-small nanoparticles that diffuse and partially filled the mesoporous pores of the silica support over time. Finally, the redispersion phenomenon was found relevant to the H2 gas in the reaction environment and enhanced as the H2 concentration increased. This finding is believed to provide in-depth insights into the structural evolution of Ni-based catalysts and product selectivity control in CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Liuqingqing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feixiang Tian
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulian He
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Xu A, Chen X, Wei D, Chu B, Yu M, Yin X, Xu J. Regulating the Electronic Structure of Bismuth Nanosheets by Titanium Doping to Boost CO 2 Electroreduction and Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302253. [PMID: 37211692 DOI: 10.1002/smll.202302253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (E-CO2 RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (TiBi NSs) with enhanced E-CO2 RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4 Ti3 O12 ). We comprehensively evaluated TiBi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of TiBi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 - and enhance the adsorption strength of *OCHO intermediate. The TiBi NSs deliver a high formate Faradaic efficiency (FEformate ) of 96.3% and a formate production rate of 4032 µmol h-1 cm-2 at -1.01 V versus RHE. An ultra-high current density of -338.3 mA cm-2 is achieved at -1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn-CO2 battery using TiBi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm-2 and excellent charging/discharging stability of 27 h.
Collapse
Affiliation(s)
- Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Bingxian Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Meihua Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
- School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements. Catalysts 2023. [DOI: 10.3390/catal13020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex effects. The objective of this work was the study of the influence of the support with a series of catalysts supported on alumina, ceria, ceria–zirconia, and titania. Catalysts’ performance has been kinetically and spectroscopically evaluated over a wide range of temperatures (150–500 °C). The main results have shown remarkable differences among the catalysts as concerns Ni dispersion, metallic precursor reducibility, basic properties, and catalytic activity. Operando infrared spectroscopy measurements have evidenced the presence of almost the same type of adsorbed species during the course of the reaction, but with different relative intensities. The results indicate that using as support of Ni a reducible metal oxide that is capable of developing the basicity associated with medium-strength basic sites and a suitable balance between metallic sites and centers linked to the support leads to high CO2 methanation activity. In addition, the results obtained by operando FTIR spectroscopy suggest that CO2 methanation follows the formate pathway over the catalysts under consideration.
Collapse
|
7
|
Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci Rev 2023; 10:nwac209. [PMID: 36817842 PMCID: PMC9935990 DOI: 10.1093/nsr/nwac209] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
A major impediment to industrial urea synthesis is the lack of catalysts with high selectivity and activity, which inhibits the efficient industrial production of urea. Here, we report a new catalyst system suitable for the highly selective synthesis of industrial urea by in situ growth of graphdiyne on the surface of cobalt-nickel mixed oxides. Such a catalyst is a multi-heterojunction interfacial structure resulting in the obvious incomplete charge-transfer phenomenon between a graphdiyne and metal oxide interface and multiple intermolecular interactions. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on the mechanism reveal that the catalyst could effectively optimize the adsorption/desorption capacities of the intermediate and promote direct C-N coupling by significantly suppressing by-product reactions toward the formation of H2, CO, N2 and NH3. The catalyst can selectively synthesize urea directly from nitrite and carbon dioxide in water at room temperature and pressure, and exhibits a record-high Faradaic efficiency of 64.3%, nitrogen selectivity (Nurea-selectivity) of 86.0%, carbon selectivity (Curea-selectivity) of ∼100%, as well as urea yield rates of 913.2 μg h-1 mgcat -1 and remarkable long-term stability.
Collapse
Affiliation(s)
- Danyan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuchen Zheng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhu L, Zhang H, Zhu H, Fu H, Kroner A, Yang Z, Ye H, Chen BH, Luque R. Controlling nanostructures of PtNiCo/C trimetallic nanocatalysts and relationship of structure-catalytic performance for selective hydrogenation of nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Shen X, Wang Z, Wang Q, Tumurbaatar C, Bold T, Liu W, Dai Y, Tang Y, Yang Y. Modified Ni-carbonate interfaces for enhanced CO2 methanation activity: Tuned reaction pathway and reconstructed surface carbonates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Tao J, Zhang Q, Zhao Y, Chen H, Liu W, He Y, Yin Y, He T, Chen J, Wang X, Wu D, Peng H. Elucidating the role of confinement and shielding effect over zeolite enveloped Ru catalysts for propane low temperature degradation. CHEMOSPHERE 2022; 302:134884. [PMID: 35551937 DOI: 10.1016/j.chemosphere.2022.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are the main precursor for ozone formation and hazardous to human health. Light alkane as one of the typical VOCs is difficult to degrade to CO2 and H2O by catalytic degradation method due to its strong C-H bond. Herein, a series of ultrafine Ru nanoclusters (<0.95 nm) enveloped in silicalite-1 (S-1) zeolite catalysts were designed and prepared by a simple one-pot method and applied for catalytic degradation of propane. The results demonstrate that the enveloped Ru1@S-1 catalyst has excellent propane degradation performance. Its T95 is as low as 294 °C with moisture, and the turnover frequency (TOF) value is up to 5.07 × 10-3 s-1, evidently higher than that of the comparison supported catalyst (Ru1/S-1). Importantly, Ru1@S-1 exhibits superior thermal stability, water resistance and recyclability, which should be attributed to the confinement and shielding effect of the S-1 shell. The in-situ DRIFTS result reveals that the propane degradation over Ru1@S-1 follows the Mars-van-Krevelen (MvK) mechanism, where the hydroxy from the framework of zeolite can provide the active oxygen species. Our work provides a new candidate and guideline for an efficient and stable catalyst for the low-temperature degradation of the light alkane VOCs.
Collapse
Affiliation(s)
- Jinxiong Tao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Qiuli Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yonghua Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Hunan Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Wenming Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yuzhao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuni Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tianyao He
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xufang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Honggen Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
11
|
Song Y, Hu C, Li C, Ma M. Selective Hydrogenation of Crotonaldehyde on SiO
2
‐Supported Pt Clusters: A DFT Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Song
- Nanjing IPE Institute of Green Manufacturing Industry Nanjing Jiangsu 211135 China
| | - Chaoquan Hu
- Nanjing IPE Institute of Green Manufacturing Industry Nanjing Jiangsu 211135 China
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Chang Li
- Nanjing IPE Institute of Green Manufacturing Industry Nanjing Jiangsu 211135 China
| | - Meng Ma
- Nanjing IPE Institute of Green Manufacturing Industry Nanjing Jiangsu 211135 China
| |
Collapse
|
12
|
Evdokimenko N, Yermekova Z, Roslyakov S, Tkachenko O, Kapustin G, Bindiug D, Kustov A, Mukasyan AS. Sponge-like CoNi Catalysts Synthesized by Combustion of Reactive Solutions: Stability and Performance for CO2 Hydrogenation. MATERIALS 2022; 15:ma15155129. [PMID: 35897563 PMCID: PMC9329901 DOI: 10.3390/ma15155129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Active and stable catalysts are essential for effective hydrogenation of gaseous CO2 into valuable chemicals. This work focuses on the structural and catalytic features of single metals, i.e., Co and Ni, as well as bimetallic CoNi alloy catalysts synthesized via combustion of reactive sol-gels. Different characterization methods were used for studying the relationships between the structure, composition, and catalytic activity of the fabricated materials. All catalysts exhibited highly porous sponge-like microstructure. The outermost surfaces of the CoNi alloys were more saturated with Co, while a stoichiometric Co/Ni ratio was observed for the particle’s bulk. Catalytic properties of the as-synthesized powders were studied in the CO2 hydrogenation reaction at 300 °C for over 80 h of time on stream. All the catalysts demonstrated exceptional selectivity with respect to CH4 formation. However, the combination of elemental Co and Ni in a single phase resulted in a synergistic effect in bulk alloy catalysts, with activity twofold to threefold that of single-metal catalysts. The activity and stability of the CoNi3 catalyst were higher than those previously reported for Ni-based catalysts. The reasons for this behavior are discussed.
Collapse
Affiliation(s)
- Nikolay Evdokimenko
- Center of Functional Nano-Ceramics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; (N.E.); (Z.Y.); (D.B.); (A.K.)
- N.D. Zelinsky Institute of Organic Chemistry RAS, 119991 Moscow, Russia; (O.T.); (G.K.)
| | - Zhanna Yermekova
- Center of Functional Nano-Ceramics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; (N.E.); (Z.Y.); (D.B.); (A.K.)
| | - Sergey Roslyakov
- Center of Functional Nano-Ceramics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; (N.E.); (Z.Y.); (D.B.); (A.K.)
- Correspondence: (S.R.); (A.S.M.)
| | - Olga Tkachenko
- N.D. Zelinsky Institute of Organic Chemistry RAS, 119991 Moscow, Russia; (O.T.); (G.K.)
| | - Gennady Kapustin
- N.D. Zelinsky Institute of Organic Chemistry RAS, 119991 Moscow, Russia; (O.T.); (G.K.)
| | - Denis Bindiug
- Center of Functional Nano-Ceramics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; (N.E.); (Z.Y.); (D.B.); (A.K.)
| | - Alexander Kustov
- Center of Functional Nano-Ceramics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; (N.E.); (Z.Y.); (D.B.); (A.K.)
- N.D. Zelinsky Institute of Organic Chemistry RAS, 119991 Moscow, Russia; (O.T.); (G.K.)
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander S. Mukasyan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: (S.R.); (A.S.M.)
| |
Collapse
|
13
|
Zhang W, Pu T, Wang Z, Shen L, Zhu M. Combined In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Kinetic Studies on CO 2 Methanation Reaction over Ni/Al 2O 3. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tiancheng Pu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liang Shen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
14
|
Dependency of CO2 Methanation on the Strong Metal-Support Interaction for Supported Ni/CeO2 Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Cao X, Han YF, Peng C, Zhu M. A Review on the Water‐Gas Shift Reaction over Nickel‐Based Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Cao
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Yi-Fan Han
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Chong Peng
- Sinopec: China Petrochemical Corporation School of Chemical Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology Department of Chemical Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
16
|
Pu T, Shen L, Xu J, Peng C, Zhu M. Revealing the dependence of CO
2
activation on hydrogen dissociation ability over supported nickel catalysts. AIChE J 2021. [DOI: 10.1002/aic.17458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liang Shen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Chong Peng
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC Dalian China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|