1
|
Wu ST, Qiu ZY, Su HQ, Cao Y, Gao SQ, Wang H, Wang CH, Lin YW. Design of Mn-based nanozymes with multiple enzyme-like activities for identification/quantification of glyphosate and green transformation of organophosphorus. Biosens Bioelectron 2024; 263:116580. [PMID: 39033653 DOI: 10.1016/j.bios.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
A Mn-based nanozyme, Mn-uNF/Si, with excellent alkali phosphatase-like activity was designed by in-situ growth of ultrathin Mn-MOF on the surface of silicon spheres, and implemented as an effective solid Lewis-Brønsted acid catalyst for broad-spectrum dephosphorylation. H218O-mediated GC-MS studies confirmed the cleavage sites and the involvement of H2O in the new bonds. DRIFT NH3-IR and in-situ ATR-FTIR confirmed the coexistence of Lewis-Brønsted acid sites and the adjustment of adsorption configurations at the interfacial sites. In addition, a green transformation route of "turning waste into treasure" was proposed for the first time ("OPs→PO43-→P food additive") using edible C. reinhardtii as a transfer station. By alkali etching of Mn-uNF/Si, a nanozyme Mn-uNF with laccase-like activity was obtained. Intriguingly, glyphosate exhibits a laccase-like fingerprint-like response (+,-) of Mn-uNF, and a non-enzyme amplified sensor was thus designed, which shows a good linear relationship with Glyp in a wide range of 0.49-750 μM, with a low LOD of 0.61 μM, as well as high selectivity and anti-interference ability under the co-application of phosphate fertilizers and multiple pesticides. This work provides a controllable methodology for the design of bifunctional nanozymes, which sheds light on the highly efficient green transformation of OPs, and paves the way for the selective recognition and quantification of glyphosate. Mechanistically, we also provided deeper insights into the structure-activity relationship at the atomic scale.
Collapse
Affiliation(s)
- Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Zhi-Yu Qiu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hui-Qi Su
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ying Cao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui Wang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cong-Hui Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450000, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Liu Y, Gao L, Chang G, Zhou W. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts. BIORESOURCE TECHNOLOGY 2024; 406:131001. [PMID: 38897549 DOI: 10.1016/j.biortech.2024.131001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Oxygen vacancies (Ov) in metal oxides play a crucial role in modifying the electronic and acidic properties of catalysts, thereby influencing their catalytic activity. This study explores the impact of Ov in MnOx catalysts on their acidic and catalytic properties for the Meerwein-Ponndorf-Verley reduction of levulinic acid (LA) and levulinate to γ-valerolactone (GVL). Various characterization techniques demonstrate that surface Ov significantly modulate the acidic properties of MnOx catalysts, positively correlating with Lewis/Brønsted acid ratio and GVL yield. In situ DRIFTS and DFT calculations further unveil the reaction mechanism, revealing that Ov facilitate the activation and dehydrogenation of isopropanol and subsequent hydrogen transfer and hydrogenation of LA, leading to enhanced GVL production. These insights underscore the pivotal role of Ov in MnOx catalysts for the efficient conversion of LA to GVL, highlighting their importance in improving catalytic performance.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Lingling Gao
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Guozhang Chang
- Institute of Yellow River Delta Earth Surface Process and Ecological Integrity, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Wu ST, Su HQ, Xiao QX, Qiu ZY, Huang GQ, He MN, Ge Y, Wang CH, Lin YW. Design of bifunctional ultrathin MnO 2 nanofilm with laccase-like activity for sensing environmental pollutants containing phenol groups. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132493. [PMID: 37716263 DOI: 10.1016/j.jhazmat.2023.132493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Laccase-catalyzed oxidative reactions are increasingly examined as a reliable approach to environmental analysis and remediation, and it is urgent to widen metal category to compensate huge gap in the number of studies on copper- and non-copper laccase mimics. Herein, two-dimensional ultrathin MnO2 nanofilm (Mn-uNF) was designed via a chemical deposition and alkali etching process. Similar to Cu-laccase, Mn-uNF can oxidize phenols via a one-electron-transfer reaction of Mn(III) and accelerate the MnIII/MnIV state cycle through an unconventional oxygen reduction process. The excellent laccase-like performance of Mn-uNF can be ascribed to the abundant atomically dispersed Vo-assisted Mn(III) and surface -OH species, which was confirmed by characterizations and DFT calculation. Further, a facile dual-function colorimetric platform was designed for array sensing of o-, m-, and p-dihydroxybenzene isomers and one-step discrimination of tetracyclines containing phenol groups. These findings provide reasonable guidance for the design of a nanozyme with active Mn sites as a new family member of highly efficient copper-free laccase mimics.
Collapse
Affiliation(s)
- Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hui-Qi Su
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qian-Xiang Xiao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Yu Qiu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Gang-Qiang Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Man-Ni He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yi Ge
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Cong-Hui Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China.
| |
Collapse
|
4
|
Zhang R, Chen Q, Hu YT, Yang L, Chen Z, Wang CW, Qin YH. Highly Active and Water-Resistant Cu-Doped OMS-2 Catalysts for CO Oxidation: The Importance of the OMS-2 Synthesis Method and Cu Doping. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58476-58486. [PMID: 38062933 DOI: 10.1021/acsami.3c14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porous cryptomelane-type Mn oxide (OMS-2) has an outstanding redox property, making it a highly desirable substitute for noble metal catalysts for CO oxidation, but its catalytic activity still needs to be improved, especially in the presence of water. Given the strong structure-performance correlation of OMS-2 for oxidation reactions, herein, OMS-2 is synthesized by solid state (OMS-2S), reflux (OMS-2R), and hydrothermal (OMS-2H) methods, aiming to improve its CO oxidation performance through manipulating synthesis parameters to tailor its particle size, morphology, and crystallinity. Characterization shows that OMS-2S has the highest CO oxidation activity in the absence of water due to its low crystallinity, high specific surface area, large oxygen vacancy content, and good redox property, but the presence of water can greatly reduce its CO oxidation activity. Doping Cu into an OMS-2 can not only improve its CO oxidation activity but also greatly improve its water tolerance. The Cu-doped OMS-2S catalyst with ∼4 wt % Cu can achieve a T90 of 49 °C (1% CO/10% O2/N2 and WHSV = 60,000 mL·g-1·h-1), ranking among the lowest reported T90 values for Mn oxide-based CO oxidation catalysts, and it can maintain nearly 100% CO conversion in the presence of 5 vol % water for over 50 h. In situ DRIFTs characterization indicates that the good water resistance of Cu-doped OMS-2S can be attributed to the significantly suppressed surface hydroxyl group generation because of Cu doping. This work demonstrates the importance of the synthesis method and Cu doping in determining the CO oxidation activity and water resistance of OMS-2 and will provide guidance for synthesizing highly active and water-resistant CO oxidation catalysts.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun-Tao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cun-Wen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan-Hang Qin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Joint Laboratory of Catalytic Materials and Engineering, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
5
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Huang W, Zheng Y, Li Y. In situ green synthesis of the nanocomposites of MnO 2/graphene as an oxidase mimic for sensitive colorimetric and electrochemical dual-mode biosensing. RSC Adv 2023; 13:31067-31076. [PMID: 37881765 PMCID: PMC10594154 DOI: 10.1039/d3ra05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Herein we report the colorimetry and an electrochemical for the determination of dopamine (DA) by using MnO2 nanoparticles and graphene nanosheets composite (MnO2@G) that display oxidase mimicking property. MnO2@G could directly oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) without extra oxidants such as H2O2. Nevertheless, the presence of DA will inhibit the TMB oxidation due to the presence of the competitive reaction of MnO2@G and DA, giving a product color change from blue to colorless. A colorimetric assay for detect the concentration of DA was worked out according to this finding. Response is linear in the 0.1 to 15 μM DA concentration range, and the detection limit is 0.14 μM. Wider detection range is achieved in an electrochemical method which is due to the pronounced electrocatalytic activity of MnO2@G. The MnO2@G was modified on the surface of the glassy carbon electrode in order to fabricate one type electrochemical sensor. The sensor achieves a wide detection two linear ranges from 0.4 to 70 μM, with the detection limit of 1.16 μM. The detection of DA in real serum sample proved that the nanozyme based on MnO2@G could be developed into a colorimetry and electrochemical dual-readout sensing platform.
Collapse
Affiliation(s)
- Yaopeng Liu
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| | - Yi Gao
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| | - Tingting Chu
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Wensheng Huang
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Yin Zheng
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| |
Collapse
|
6
|
Luo J, Zhu X, Wu H, Zhou Z, Chen G, Yang G. Soot oxidation over V/ZSM-5 catalysts in a dielectric barrier discharge (DBD) reactor: Performance enhancement by transition metal (Mn, Co and Fe) doping. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Liu Q, Wang S, Han F, Lv S, Li D, Ouyang J. Multiple Interface Coupling in Ultrathin Mn-based Composites for Superior Catalytic Oxidation: Implications of Interface Coupling on Structural Defects. J Colloid Interface Sci 2023; 642:380-392. [PMID: 37018963 DOI: 10.1016/j.jcis.2023.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Manganese oxide has been recognized as one of the most promising gaseous heterogeneous catalysts due to its low cost, environmental friendliness, and high catalytic oxidation performance. The modulation of the interfacial coupling effect of manganese oxides by chemical means is considered a critical and effective way to improve the catalytic performance. Herein, a novel one-step synthetic strategy of highly-efficient ultrathin manganese-based catalysts is proposed through optimal regulation of metal/manganese oxide multi-interfacial coupling. Carbon monoxide (CO) and propane (C3H8) oxidation are employed as probe reactions to investigate the structure-catalytic mechanism - catalytic performance relationship. The ultrathin manganese (Mn)-based catalyst exhibits superior low-temperature catalytic activity with a 90% conversion of CO/C3H8 realized at 106℃ and 350℃. Subsequently, the effect of "interfacial effect" on the intrinsic properties of manganese oxides is revealed. The ultrathin appearance of two-dimensional (2D) manganese dioxide (MnO2) nanosheets changes the binding force in the vertical direction, thus resulting in an increase in the average manganese-oxygen (Mn-O) bond length and exposing more surface defects. Besides, the introduction of Copper (Cu) species into the catalyst further weakens the Mn-O bond and promotes the generation of oxygen vacancies, which subsequently enhances the oxygen migration rate. This study provides new insights into the optimal design of transition metal oxide interfacial assemblies for efficient catalytic reactions.
Collapse
|
8
|
Deng Y, Fu L, Song W, Ouyang L, Yuan S. Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Tong W, Wang J, Du X, Wang X, Wang Y, Zhang Y. Tributyl phosphate degradation and phosphorus immobilization by MnO 2: Reaction condition optimization and mechanism exploration. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128725. [PMID: 35338934 DOI: 10.1016/j.jhazmat.2022.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The treatment of tributyl phosphate (TBP) extractant waste from specific industry, eg., nuclear industry, is a great challenge due to its stability and high environmental risk of phosphorus-containing species releasing. Inspired by chemical looping combustion (CLC) technology, a MnO2-assisted thermal oxidation strategy is proposed for TBP degradation and simultaneously P immobilization. Under recommended reaction conditions of 220 °C, 10 g MnO2 mL-1 TBP and 3 h reaction duration, a high P immobilization efficiency of 93.99% is achieved. Material characterization results indicate that P is mainly immobilized in the form of Mn2P2O7, which greatly reduces the environmental risk of P-containing species. TBP degradation intermediates are further identified by thermogravimetric-gas chromatography-mass spectrometry (TG-GC-MS), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), which facilitates understanding of reaction mechanisms as well as proposing possible pathways of TBP degradation. It is suggested that MnO2 provides essential oxygen as oxygen carrier for flameless combustion. Meantime, MnO2 reduction leads to the generation of Mn(III) species. The existence of oxygen vacancy in MnO2 also facilitates •O2- radical generation. Under flameless combustion and attacks of Mn(III) and •O2-, TBP is firstly degraded into intermediates and finally mineralized into CO2 and H2O, while P is mainly immobilized as pyrophosphate.
Collapse
Affiliation(s)
- Wenhua Tong
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiepeng Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqian Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Zhang C, Cao Y, Wang Z, Tang M, Wang Y, Tang S, Chen Y, Tang W. Insights into the Sintering Resistance of Sphere-like Mn 2O 3 in Catalytic Toluene Oxidation: Effect of Manganese Salt Precursor and Crucial Role of Residual Trace Sulfur. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yijia Cao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaotong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Meiyu Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China
| |
Collapse
|
12
|
Jiang B, Cha X, Huang Z, Hu S, Xu K, Cai D, Xiao J, Zhan G. Green fabrication of hierarchically-structured Pt/bio-CeO2 nanocatalysts using natural pollen templates for low-temperature CO oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Tian FX, Li H, Zhu M, Tu W, Lin D, Han YF. Effect of MnO 2 Polymorphs' Structure on Low-Temperature Catalytic Oxidation: Crystalline Controlled Oxygen Vacancy Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18525-18538. [PMID: 35418231 DOI: 10.1021/acsami.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MnO2 polymorphs (α-, β-, and ε-MnO2) were synthesized, and their chemical/physical properties for CO oxidation were systematically studied using multiple techniques. Density functional theory (DFT) calculations and temperature-programmed experiments reveal that β-MnO2 shows low energies for oxygen vacancy generation and excellent redox properties, exhibiting significant CO oxidation activity (T90 = 75 °C) and stability even under a humid atmosphere. For the first time, we report that the specific reaction rate for β-MnO2 (0.135 moleculeCO·nm-2·s-1 at 90 °C) is roughly approximately 4 and 17 times higher than that of ε-MnO2 and α-MnO2, respectively. The specific reaction rate order (β-MnO2 > ε-MnO2 > α-MnO2) is not only in good agreement with reduction rates (CO-TPSR measurements) but also agrees with the DFT calculation. In combination with in situ spectra and intrinsic kinetic studies, the mechanisms of CO oxidation over various crystal structures of MnO2 were proposed as well. We believe the new insights from this study will largely inspire the design of such a kind of catalyst.
Collapse
Affiliation(s)
- Fei-Xiang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hu Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weifeng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Dehai Lin
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
LaNiO3 Perovskite Synthesis through the EDTA–Citrate Complexing Method and Its Application to CO Oxidation. Catalysts 2022. [DOI: 10.3390/catal12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of LaNiO3 materials were synthesized by the EDTA–citrate complexing method, modifying different physicochemical conditions. The LaNiO3 samples were calcined between 600 and 800 °C and characterized by XRD, SEM, XPS, CO-TPD, TG, DT, and N2 adsorption. The results evidence that although all the samples presented the same crystal phase, LaNiO3 as expected, some microstructural and superficial features varied as a function of the calcination temperature. Then, LaNiO3 samples were tested as catalysts of the CO oxidation process, a reaction never thoroughly analyzed employing this material. The catalytic results showed that LaNiO3 samples calcined at temperatures of 600 and 700 °C reached complete CO conversions at ~240 °C, while the sample thermally treated at 800 °C only achieved a 100% of CO conversion at temperatures higher than 300 °C. DRIFTS and XRD were used for studying the reaction mechanism and the catalysts’ structural stability, respectively. Finally, the obtained results were compared with different Ni-containing materials used in the same catalytic process, establishing that LaNiO3 has adequate properties for the CO oxidation process.
Collapse
|
15
|
Zheng X, Zhang C, Mao D, Mao H, Yu J. Fabrication of MnCoOx composite oxides for catalytic CO oxidation via a solid-phase synthesis: The significant effect of manganese precursor. NEW J CHEM 2022. [DOI: 10.1039/d1nj06026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Mn3Co16Ox composite oxides catalysts were fabricated via a solid-phase synthesis using different manganese precursors (namely as manganese acetate (A), nitrate (N), and sulfate (S)). It has been...
Collapse
|
16
|
Shao S, Li Z, Gao K, Zhang J, Liu Y, Jiao W. Preparation of Cu-MnOX/γ-Al2O3 by high gravity-assisted impregnation method for heterogeneous catalytic ozonation of nitrobenzene. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Song H, Xu L, Chen M, Cui Y, Wu CE, Qiu J, Xu L, Cheng G, Hu X. Recent progresses in the synthesis of MnO 2 nanowire and its application in environmental catalysis. RSC Adv 2021; 11:35494-35513. [PMID: 35493136 PMCID: PMC9043261 DOI: 10.1039/d1ra06497e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Nanostructured MnO2 with various morphologies exhibits excellent performance in environmental catalysis owing to its large specific surface area, low density, and adjustable chemical properties. The one-dimensional MnO2 nanowire has been proved to be the dominant morphology among various nanostructures, such as nanorods, nanofibers, nanoflowers, etc. The syntheses and applications of MnO2-based nanowires also have become a research hotspot in environmental catalytic materials over the last two decades. With the continuous deepening of the research, the control of morphology and crystal facet exposure in the synthesis of MnO2 nanowire materials have gradually matured, and the catalytic performance also has been greatly improved. Differences in the crystalline phase structure, preferably exposed crystal facets, and even the length of the MnO2 nanowires will evidently affect the final catalytic performances. Besides, the modifications by doping or loading will also significantly affect their catalytic performances. This review carefully summarizes the synthesis strategies of MnO2 nanowires developed in recent years as well as the influences of the phase structure, crystal facet, morphology, dopant, and loading amount on the catalytic performance. Besides, the cutting-edge applications of MnO2 nanowires in the field of environmental catalysis, such as CO oxidation, the removal of VOCs, denitrification, etc., have been also summarized. The application of MnO2 nanowire in environmental catalysis is still in the early exploratory stage. The gigantic gap between theoretical investigation and industrial application is still a great challenge. Compared with noble metal based traditional environmental catalytic materials, the lower cost of MnO2 has injected new momentum and promising potential into this research field.
Collapse
Affiliation(s)
- Huikang Song
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Yan Cui
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Jian Qiu
- Jiangsu ShuangLiang Environmental Technology Co., Ltd Jiangyin 214400 P. R. China
| | - Liang Xu
- Jiangsu ShuangLiang Environmental Technology Co., Ltd Jiangyin 214400 P. R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan Jinan 250022 P. R. China
| |
Collapse
|