1
|
Liu T, Tao Q, Wang Y, Luo R, Ma J, Lei J. Tailored Cis-Trans Isomeric Metal-Covalent Organic Frameworks for Coordination Configuration-Dependent Electrochemiluminescence. J Am Chem Soc 2024; 146:18958-18966. [PMID: 38952302 DOI: 10.1021/jacs.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and β-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.
Collapse
Affiliation(s)
- Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiantu Tao
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Diao Y, Shan R, Li M, Li S, Huhe T, Yuan H, Chen Y. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. CHEMOSPHERE 2023; 342:140205. [PMID: 37722535 DOI: 10.1016/j.chemosphere.2023.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
An innovative Fe-N co-coupled catalyst MN-2 was prepared from waste spirulina by co-pyrolysis as a highly active carbon-based catalyst for the activation of peroxydisulfate (PDS) for the degradation of sulfathiazole (ST). The protein-rich raw material Spirulina provided sufficient N during the pyrolysis process, thus achieving N doping without an additional nitrogen source, optimizing the interlayer structure of the biochar material and effectively inhibiting the leaching of the ligand metal Fe. MN-2 showed highly efficient catalytic activity for peroxydisulfate (PDS), with a degradation efficiency of 100% for ST within 30 min and a kinetic constant (kobs) reached 0.306 min-1, benefiting from the excellent adsorption ability of MN-2 forming MN-2-PDS* complexes and the electron transfer process generated by Fe3+ and Fe2+ cycling, oxygen-containing functional groups. The effects of PDS dosage, initial pH and coexisting anions on the oxidation process were also investigated. Free radical quenching, electron paramagnetic resonance and electrochemical measurements were employed to explain the hydroxyl (·OH) and sulfate (SO4·-) as the dominant active species and the electron transfer effect on the removal of ST. MN-2 maintained a ST removal rate of 84% after four recycling experiments, showing a high reusability performance. This work provides a simple way to prepare magnetized N-doped biochar, a novel catalyst (MN-2) for efficient activation of PDS for ST degradation, and a feasible method for removing sulfanilamide antibiotics in water environment.
Collapse
Affiliation(s)
- Yuan Diao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mei Li
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Taoli Huhe
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
4
|
Li Y, Liu K, Zhang W, Wang Y, Wang B, Wang Y, Li X. Two 3D Ln(III)-MOFs Based on Phosphineoxide Ligand: Synthesis, Structure Luminescent and Photocatalytic Properties. J Fluoresc 2023; 33:2119-2129. [PMID: 37040002 DOI: 10.1007/s10895-023-03218-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Two new 3D metal-organic frameworks (MOFs) ZZUT1 and ZZUT2 were prepared through the reaction of tris-(4-carboxylphenyl) phosphineoxide (H3TPO) ligand with nitrate of neodymium and praseodymium by solvothermal method. The structure, fluorescence and photocatalytic properties of ZZUT1 and ZZUT2 were studied. The crystalline structure of two 3D Ln(III)-MOFs both exhibit triclinic system and P-1 space group. The results of fluorescence analysis showed that two 3D Ln(III)-MOFs could selectively recognize acetone molecule through the fluorescence quenching mechanism. Meanwhile, ZZUT1 and ZZUT2 showed good adsorption and degradation ability on organic dye methylene blue (MB) in photocatalytic condition, and the degradation efficiency can reach to more than 90%.
Collapse
Affiliation(s)
- Yuling Li
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan, 450044, People's Republic of China.
| | - Kecheng Liu
- Analysis and Test Center, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Wenmin Zhang
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan, 450044, People's Republic of China
| | - Yingxin Wang
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan, 450044, People's Republic of China
| | - Baoyu Wang
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan, 450044, People's Republic of China
| | - Yufei Wang
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan, 450044, People's Republic of China
| | - Xiaochuan Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
5
|
Liu C, Wang P, Huang P, Yang Z, Zhou G. Photo-induced heterogeneous regeneration of Fe(Ⅱ) in Fenton reaction for efficient polycyclic antibiotics removal and in-depth charge transfer mechanism. J Colloid Interface Sci 2023; 638:768-777. [PMID: 36780855 DOI: 10.1016/j.jcis.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Fenton reaction is regarded as a potential treatment for antibiotics removal, but challenges remain due to the sluggish reaction kinetics of Fe(III) reduction and incomplete degradation from insufficient active substance. Distinguished from traditional Fe(Ⅱ) regeneration techniques, this work focuses on utilizing the aliovalent redox pairs and built-in electric field to induce photo-excited electrons to cross the material interface and achieve Fe(III) reduction (heterogeneous regeneration). Herein, oxygen-deficient CeO2 particles are anchored on metal-organic frameworks (MIL-88A) and thus constitute the heterojunction with enhanced photoelectric properties, accelerating the directional charge transfer. Consequently, the synthesized MIL-88A/CeO2(OV) composite can degrade 95.76% of oxytetracycline within 60 min in photo-Fenton reaction and maintain a high mineralization rate (75.33%) after 4 cyclic tests. Furthermore, the charge transfer mechanisms of Fe cycle and antibiotics mineralization are both unveiled via experiment results and theorical calculation. This work proposes a new paradigm for constructing self-sufficient photo-Fenton catalytic system for efficient and sustainable removal of polycyclic antibiotics.
Collapse
Affiliation(s)
- Chongchong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peilin Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhimin Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
6
|
Cheng G, Yuan C, Ruan W, Ma B, Zhang X, Yuan X, Li Z, Wang D, Teng F. Visible light enhanced persulfate activation for degradation of tetracycline via boosting adsorption of persulfate by ligand-deficient MIL-101(Fe) icosahedron. CHEMOSPHERE 2023; 317:137857. [PMID: 36642131 DOI: 10.1016/j.chemosphere.2023.137857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this work, Fe-based metal-organic frameworks (Fe-MOFs) are prepared by a simple solvothermal method, in which acetic acid/N, N-dimethylformamide (HAc/DMF) mixture solvents are employed to regulate the particle morphology, exposed facets and ligand defects. At HAc/DMF = 0/50, 5/45 and 8/42 (volume ratio), the irregular particles (MIL-53(Fe)), elongated icosahedrons (5H-MIL-101(Fe)) and icosahedrons (8H-MIL-101(Fe)) are obtained, respectively. Under visible light irradiation (λ > 420 nm) and the addition of sodium persulfate (PS), 5H-MIL-101(Fe) shows the highest degradation activity for tetracycline (TC). Specifically, 80% of TC has been removed by 5H-MIL-101(Fe) within 25 min, and the degradation kinetics rate is 3.03 times higher than that over MIL-53(Fe). The improvement of catalytic activity is mainly attributed to the active facets exposed and ligand defects of 5H-MIL-101(Fe). Density functional theory (DFT) calculation further confirms that the active facets exposed and ligand defects of 5H-MIL-101(Fe) favor the adsorption and activation of PS, benefiting the generation of •SO4-. Besides, a probable degradation pathway of TC is proposed based on trapping experiments and liquid chromatography-mass spectrometry (LC-MS) test. Furthermore, the toxicities of intermediates are predicted by the quantitative structure-activity relationship (QSAR) mathematical model. This work demonstrates that visible light enhanced PS activation (Vis-PSA) can more effectively degrade organic pollutants, and this work also provides a simple strategy to precisely regulate ligand defects and actively exposed facets of Fe-MOFs to enhance the adsorption and activation of PS.
Collapse
Affiliation(s)
- Gangya Cheng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Chen Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wansheng Ruan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ben Ma
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyu Zhang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinjing Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Zhihui Li
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Dan Wang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Fei Teng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
7
|
Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|