1
|
Elmutasim O, Hussien AG, Sharan A, AlKhoori S, Vasiliades MA, Taha IMA, Kim S, Harfouche M, Emwas AH, Anjum DH, Efstathiou AM, Yavuz CT, Singh N, Polychronopoulou K. Evolution of Oxygen Vacancy Sites in Ceria-Based High-Entropy Oxides and Their Role in N 2 Activation. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38684003 PMCID: PMC11082846 DOI: 10.1021/acsami.3c16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
In this work, a relatively new class of materials, rare earth (RE) based high entropy oxides (HEO) are discussed in terms of the evolution of the oxygen vacant sites (Ov) content in their structure as the composition changes from binary to HEO using both experimental and computational tools; the composition of HEO under focus is the CeLaPrSmGdO due to the importance of ceria-related (fluorite) materials to catalysis. To unveil key features of quinary HEO structure, ceria-based binary CePrO and CeLaO compositions as well as SiO2, the latter as representative nonreducible oxide, were used and compared as supports for Ru (6 wt % loading). The role of the Ov in the HEO is highlighted for the ammonia production with particular emphasis on the N2 dissociation step (N2(ads) → Nads) over a HEO; the latter step is considered the rate controlling one in the ammonia production. Density functional theory (DFT) calculations and 18O2 transient isotopic experiments were used to probe the energy of formation, the population, and the easiness of formation for the Ov at 650 and 800 °C, whereas Synchrotron EXAFS, Raman, EPR, and XPS probed the Ce-O chemical environment at different length scales. In particular, it was found that the particular HEO composition eases the Ov formation in bulk, in medium (Raman), and in short (localized) order (EPR); more Ov population was found on the surface of the HEO compared to the binary reference oxide (CePrO). Additionally, HEO gives rise to smaller and less sharp faceted Ru particles, yet in stronger interaction with the HEO support and abundance of Ru-O-Ce entities (Raman and XPS). Ammonia production reaction at 400 °C and in the 10-50 bar range was performed over Ru/HEO, Ru/CePrO, Ru/CeLaO, and Ru/SiO2 catalysts; the Ru/HEO had superior performance at 10 bar compared to the rest of catalysts. The best performing Ru/HEO catalyst was activated under different temperatures (650 vs 800 °C) so to adjust the Ov population with the lower temperature maintaining better performance for the catalyst. DFT calculations showed that the HEO active site for N adsorption involves the Ov site adjacent to the adsorption event.
Collapse
Affiliation(s)
- Omer Elmutasim
- Mechanical
Engineering Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aseel G. Hussien
- Mechanical
Engineering Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abhishek Sharan
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Physics
Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sara AlKhoori
- Mechanical
Engineering Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Michalis A. Vasiliades
- Department
of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
| | | | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Advanced Membranes & Porous Materials (AMPM) Center, and KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Messaoud Harfouche
- Synchrotron-Light
for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dalaver H. Anjum
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Physics
Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Angelos M. Efstathiou
- Department
of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, 1 University Avenue, University Campus, 2109 Nicosia, Cyprus
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Advanced Membranes & Porous Materials (AMPM) Center, and KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Nirpendra Singh
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Physics
Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Mechanical
Engineering Department, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Peng X, Zhang M, Zhang T, Zhou Y, Ni J, Wang X, Jiang L. Single-atom and cluster catalysts for thermocatalytic ammonia synthesis at mild conditions. Chem Sci 2024; 15:5897-5915. [PMID: 38665515 PMCID: PMC11041362 DOI: 10.1039/d3sc06998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Ammonia (NH3) is closely related to the fields of food and energy that humans depend on. The exploitation of advanced catalysts for NH3 synthesis has been a research hotspot for more than one hundred years. Previous studies have shown that the Ru B5 sites (step sites on the Ru (0001) surface uniquely arranged with five Ru atoms) and Fe C7 sites (iron atoms with seven nearest neighbors) over nanoparticle catalysts are highly reactive for N2-to-NH3 conversion. In recent years, single-atom and cluster catalysts, where the B5 sites and C7 sites are absent, have emerged as promising catalysts for efficient NH3 synthesis. In this review, we focus on the recent advances in single-atom and cluster catalysts, including single-atom catalysts (SACs), single-cluster catalysts (SCCs), and bimetallic-cluster catalysts (BCCs), for thermocatalytic NH3 synthesis at mild conditions. In addition, we discussed and summarized the unique structural properties and reaction performance as well as reaction mechanisms over single-atom and cluster catalysts in comparison with traditional nanoparticle catalysts. Finally, the challenges and prospects in the rational design of efficient single-atom and cluster catalysts for NH3 synthesis were provided.
Collapse
Affiliation(s)
- Xuanbei Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Mingyuan Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Tianhua Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| |
Collapse
|
3
|
Xu Z, Fan M, Tan S, Wang R, Tu W, Huang X, Pan H, Zhang H, Tang H. Electronic structure optimizing of Ru nanoclusters via Co single atom and N, S co-doped reduced graphene oxide for accelerating water electrolysis. J Colloid Interface Sci 2024; 657:870-879. [PMID: 38091910 DOI: 10.1016/j.jcis.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
The development of efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is impending for the advancement of water-splitting. In this study, we developed a novel electrocatalyst consisting of highly dispersed Ru nanoclusters ameliorated by cobalt single atoms and N, S co-doped reduced graphene oxide (CoSARuNC@NSG). Benefitted from the optimized electronic structure of the Ru nanoclusters induced by the adjacent single atomic Co and N, S co-doped RGO support, the electrocatalyst exhibits exceptional HER performance with overpotentials of 15 mV and 74 mV for achieving a current density of 10 mA cm-2 in alkaline and acidic water. The catalyst outperforms most noble metal-based HER electrocatalysts. Furthermore, the electrolyzer assembled with CoSARuNC@NSG and RuO2 demonstrated an overall voltage of 1.56 V at 10 mA cm-2 and an excellent operational stability for over 25 h with almost no attenuation. Theoretical calculations also deduce its high HER activity demonstrated by the smaller reaction energy barrier due to the optimized electronic structure of Ru nanoclusters. This strategy involving the regulation of metal nanoparticles activity through flexible single atom and GO support could provide valuable insights into the design of high-performance and low-cost HER catalysts.
Collapse
Affiliation(s)
- Ziyi Xu
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Meiling Fan
- Xiangyang Polytechnic, Xiangyang 441050, China
| | - Shifeng Tan
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenmao Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiege Huang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Hongfei Pan
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haining Zhang
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
4
|
Su K, Huang D, Fang H, Zhou Y, Qi H, Ni J, Zheng L, Lin J, Wang X, Jiang L. Boosting N 2 Conversion into NH 3 over Ru Catalysts via Modulating the Ru-Promoter Interface. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38015642 DOI: 10.1021/acsami.3c12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Promoters are indispensable components of Ru-based catalysts to promote N2 activation in ammonia (NH3) synthesis. The rational addition and regulation of promoters play a critical role in affecting the NH3 synthesis rate. In this work, we report a simple method by altering the loading sequence of Ba and Ru species to modulate the Ru-promoter interface, thus significantly boosting the NH3 synthesis rate. The Ba-Ru/GC BM catalyst via the prior loading of Ba rather than Ru over graphitic carbon (GC) exhibits a high NH3 synthesis rate of 18.7 mmol gcat-1 h-1 at 400 °C and 1 MPa, which is 2.5 times that of the Ru-Ba/GC BM catalyst via the conventional prior loading of Ru rather than Ba on GC. Our studies reveal that the prior loading of Ba benefits the high dispersion of the basic Ba promoter over an electron-withdrawing GC support, and then Ba species serve as structural promoters to stabilize Ru with small particle sizes, which exposes more active sites for N2 activation. Additionally, the intimate Ba and Ru interface enables facile electron donation from Ba to Ru sites, thus accelerating N2 dissociation to realize efficient NH3 synthesis. This work provides a simple approach to modulating the Ru-promoter interface and maximizing promoter utilization to enhance NH3 synthesis performance.
Collapse
Affiliation(s)
- Kailin Su
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Dongya Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Hongpeng Fang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Haifeng Qi
- Leibniz-Institut für Katalyse e.V., Rostock 18059, Germany
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100864, China
| | - Jianxin Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Tao J, Zhang Q, Zhao Y, Chen H, Liu W, He Y, Yin Y, He T, Chen J, Wang X, Wu D, Peng H. Elucidating the role of confinement and shielding effect over zeolite enveloped Ru catalysts for propane low temperature degradation. CHEMOSPHERE 2022; 302:134884. [PMID: 35551937 DOI: 10.1016/j.chemosphere.2022.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are the main precursor for ozone formation and hazardous to human health. Light alkane as one of the typical VOCs is difficult to degrade to CO2 and H2O by catalytic degradation method due to its strong C-H bond. Herein, a series of ultrafine Ru nanoclusters (<0.95 nm) enveloped in silicalite-1 (S-1) zeolite catalysts were designed and prepared by a simple one-pot method and applied for catalytic degradation of propane. The results demonstrate that the enveloped Ru1@S-1 catalyst has excellent propane degradation performance. Its T95 is as low as 294 °C with moisture, and the turnover frequency (TOF) value is up to 5.07 × 10-3 s-1, evidently higher than that of the comparison supported catalyst (Ru1/S-1). Importantly, Ru1@S-1 exhibits superior thermal stability, water resistance and recyclability, which should be attributed to the confinement and shielding effect of the S-1 shell. The in-situ DRIFTS result reveals that the propane degradation over Ru1@S-1 follows the Mars-van-Krevelen (MvK) mechanism, where the hydroxy from the framework of zeolite can provide the active oxygen species. Our work provides a new candidate and guideline for an efficient and stable catalyst for the low-temperature degradation of the light alkane VOCs.
Collapse
Affiliation(s)
- Jinxiong Tao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Qiuli Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yonghua Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Hunan Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Wenming Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yuzhao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuni Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tianyao He
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xufang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Honggen Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
6
|
Fan S, Zhao F, Wang X, Wang Q, Zhao Q, Li J, Liu G. Phosphorus-doped potassium peroxyniobate electrocatalyst with enriched oxygen vacancy boosts electrocatalytic nitrogen reduction to ammonia. Dalton Trans 2022; 51:11163-11168. [DOI: 10.1039/d2dt01501c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical ammonia synthesis is an environmentally friendly method for ammonia production, but still impeded by the bottleneck of N2 activation and challenging hydrogen evolution reaction (HER). Rational design and develop...
Collapse
|