1
|
Fan X, Chen Q, Zhu F, Wang T, Gao B, Song L, He J. Preparation of Surface Dispersed WO 3/BiVO 4 Heterojunction Arrays and Their Photoelectrochemical Performance for Water Splitting. Molecules 2024; 29:372. [PMID: 38257285 PMCID: PMC10818345 DOI: 10.3390/molecules29020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the uniform BiVO4 loaded on the surface of WO3 arrays. The phase composition and morphology evolution with different reaction precursors were investigated in detail. When used as photoanodes, the WO3/BiVO4 composite exhibits superior activity with photocurrent at 3.53 mA cm-2 for photoelectrochemical (PEC) water oxidation, which is twice that of pure WO3 photoanode. The superior surface dispersion structure of the BiVO4-nanoparticle@WO3-nanoflake heterojunction ensures a large effective heterojunction area and relieves the interfacial hole accumulation at the same time, which contributes to the improved photocurrents together with the stability of the WO3/BiVO4 photoanodes.
Collapse
Affiliation(s)
- Xiaoli Fan
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Qinying Chen
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Fei Zhu
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (X.F.); (Q.C.); (F.Z.)
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - Bin Gao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| | - Li Song
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
| |
Collapse
|
2
|
Gao L, Wang J, Niu H, Jin J, Ma J. Interfacial Se-O Bonds Modulating Spatial Charge Distribution in FeSe 2/Nb:Fe 2O 3 with Rapid Hole Extraction for Efficient Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032026 DOI: 10.1021/acsami.3c12007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Surface engineering is an effective strategy to improve the photoelectrochemical (PEC) catalytic activity of hematite, and the defect states with abundant coordinative unsaturation atoms can serve as anchoring sites for constructing intimate connections between semiconductors. On this basis, we anchored an ultrathin FeSe2 layer on Nb5+-doped Fe2O3 (FeSe2/Nb:Fe2O3) via interfacial Se-O chemical bonds to tune the surface potential. Density functional theory (DFT) calculations indicate that amorphous FeSe2 decoration could generate electron delocalization over the composite photoanodes so that the electron mobility was improved to a large extent. Furthermore, electrons could be transferred via the newly formed Se-O bonds at the interface and holes were collected at the surface of electrode for PEC water oxidation. The desired charge redistribution is in favor of suppressing charge recombination and extracting effective holes. Later, work function calculations and Mott-Schottky (M-S) plots demonstrate that a type-II heterojunction was formed in FeSe2/Nb:Fe2O3, which further expedited carrier separation. Except for spatial carrier modulation, the amorphous FeSe2 layer also provided abundant active sites for intermediates adsorption according to the d band center results. In consequence, the target photoanodes attained an improved photocurrent density of 2.42 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), 2.5 times as that of the bare Fe2O3. This study proposed a defect-anchoring method to grow a close-connected layer via interfacial chemical bonds and revealed the spatial charge distribution effects of FeSe2 on Nb:Fe2O3, giving insights into rational designation in composite photoanodes.
Collapse
Affiliation(s)
- Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaoli Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huilin Niu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, Gansu, P. R. China
| |
Collapse
|
3
|
Gao L, Chai H, Niu H, Jin J, Ma J. Roles of Cobalt-Coordinated Polymeric Perylene Diimide in Hematite Photoanodes for Improved Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302665. [PMID: 37264749 DOI: 10.1002/smll.202302665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Interfacial charge recombination is a permanent issue that impedes the photon energy utilization in photoelectrochemical (PEC) water splitting. Herein, a conjugated polymer, urea linked perylene diimide polymer (PDI), is introduced to the designation of hematite-based composite photoanodes. On account of its unique molecule structure with abundant electronegative atoms, the O and N atoms with lone electron pairs can bond with Fe atoms at the surface of Zr4+ doped α-Fe2 O3 (Zr:Fe2 O3 ) and thus establish charge transfer channels for expediting hole separation and migration. Meanwhile, PDI molecules can passivate the surface states in Zr:Fe2 O3 , which is in favor of suppressing carrier recombination. Particularly, Co2+ is used to coordinate with PDI (Co-PDI) to accelerate hole extraction as well as utilization, and the as-obtained Co-PDI form type-II heterojunction with Zr:Fe2 O3 . Such a photoanode configuration takes advantage of the unique molecule structure of PDI, and the target Co-PDI/Zr:Fe2 O3 photoanodes eventually attain a photocurrent density of 2.17 mA cm-2 , which is inspirational for unearthing the potential use of conjugative molecules in PEC fields.
Collapse
Affiliation(s)
- Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huilin Niu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, 741001, P. R. China
| |
Collapse
|
4
|
Zhang G, Lu C, Li C, Li S, Zhao X, Nie K, Wang J, Feng K, Zhong J. CoMoO 4-modified hematite with oxygen vacancies for high-efficiency solar water splitting. Phys Chem Chem Phys 2023; 25:13410-13416. [PMID: 37161656 DOI: 10.1039/d3cp01192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hematite is a potential photoelectrode for photoelectrochemical (PEC) water splitting. Nevertheless, its water oxidation efficiency is highly limited by its significant photogenerated carrier recombination, poor conductivity and slow water oxidation kinetics. Herein, under low-vacuum (LV) conditions, we fabricated a CoMoO4 layer on oxygen-vacancy-modified hematite (CoMo-Fe2O3 (LV)) for the first time for efficient solar water splitting. The existence of oxygen vacancies can significantly facilitate the electrical conductivity, while the large onset potential along with oxygen vacancies can be lowered by the CoMoO4 with accelerated water oxidation kinetics. Therefore, a high photocurrent density of 3.53 mA cm-2 at 1.23 VRHE was obtained for the CoMo-Fe2O3 (LV) photoanode. Moreover, it can be further coupled with the FeNiOOH co-catalyst to reach a benchmark photocurrent of 4.18 mA cm-2 at 1.23 VRHE, which is increased around 4-fold compared with bare hematite (0.90 mA cm-2). The combination of CoMoO4, FeNiOOH, and oxygen vacancies may be used as a reasonable strategy for developing high-efficiency hematite-based photoelectrodes for solar water oxidation.
Collapse
Affiliation(s)
- Gaoteng Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Cheng Lu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Chang Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Shuo Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Xiaoquan Zhao
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Zhang B, Ruan M, Wang C, Guo Z, Liu Z. Enhanced photoelectrochemical performance of α-Fe2O3 photoanode modified with NiCo layered double hydroxide. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Tian K, Wu L, Chai H, Gao L, Wang M, Niu H, Chen L, Jin J. Enhancement of charge separation and hole utilization in a Ni 2P 2O 7-Nd-BiVO 4 photoanode for efficient photoelectrochemical water oxidation. J Colloid Interface Sci 2023; 644:124-133. [PMID: 37105036 DOI: 10.1016/j.jcis.2023.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
It is necessary for photoelectrochemical (PEC) water splitting to reduce the electron-hole recombination rate and enhance the water oxidation reaction kinetics. Here, we prepared Ni2P2O7-Nd-BiVO4 composite photoanodes by coupling Ni2P2O7 co-catalysts to neodymium (Nd)-doped BiVO4 surfaces through photo-assisted electrodeposition. The Ni2P2O7-Nd-BiVO4 photoanode exhibits a high photocurrent density of 3.6 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE), which is three times higher than that of the bare BiVO4 (1.2 mA cm-2). Detailed characterizations demonstrate that Nd doping reduces the band gap, significantly increases the carrier density and effectively reduces the charge transfer resistance. More importantly, the Ni2P2O7 co-catalyst has multiple roles. Specifically, it can act as a hole extraction layer to accelerate hole migration and inhibit hole-electron recombination. At the same time, it significantly improves the water oxidation reaction kinetics. In addition, it also provides more water oxidation active sites. This work provides ideas for the design and study of efficient BiVO4-based photoanodes.
Collapse
Affiliation(s)
- Kaige Tian
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China.
| | - Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Meng Wang
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Huilin Niu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Li Chen
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
7
|
Magnetron Sputtered Al Co-Doped with Zr-Fe2O3 Photoanode with Fortuitous Al2O3 Passivation Layer to Lower the Onset Potential for Photoelectrochemical Solar Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, we investigate the magnetron sputtering deposition of an Al-layer on Zr-doped FeOOH (Zr-FeOOH) samples to fabricate a Zr/Al co-doped Fe2O3 (Al-Zr/HT) photoanode. An Al-layer is deposited onto Zr-FeOOH through magnetron sputtering and the thickness of the Al deposition is regulated by differing the sputtering time. Electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, Mott-Schottky and time-resolved photoluminescence spectra analyses were used to study, in depth, the correlations between sputtered Al-layer thicknesses and PEC characteristics. High-temperature quenching (800 °C) assists in diffusing the Al3+ in the bulk of the Zr-doped Fe2O3 photoanode, whilst an unintended Al2O3 passivation layer forms on the surface. The optimized Al-Zr/HT photoelectrode achieved 0.945 mA/cm2 at 1.0 VRHE, which is 3-fold higher than that of the bare Zr/HT photoanode. The Al2O3 passivation layer causes a 100 mV cathodic shift in the onset potential. Al co-doping improved the donor density, thus reducing the electron transit time. In addition, the passivation effect of the Al2O3 layer ameliorated the surface charge transfer kinetics. The Al2O3 passivation layer suppressed the surface charge transfer resistance, consequently expediting the hole migration from photoanode to electrolyte. We believe that the thickness-controlled Al-layer sputtering approach could be applicable for various metal oxide photoanodes to lower the onset potential.
Collapse
|