1
|
Toritani H, Yoshida K, Hosokawa T, Tanabe Y, Yamamoto Y, Nishiyama H, Kido T, Kawaguchi N, Matsuda M, Nakano S, Miyazaki S, Uetani T, Inaba S, Yamaguchi O, Kido T. The Feasibility of a Model-Based Iterative Reconstruction Technique Tuned for the Myocardium on Myocardial Computed Tomography Late Enhancement. J Comput Assist Tomogr 2024:00004728-990000000-00340. [PMID: 39095055 DOI: 10.1097/rct.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study evaluated the feasibility of a model-based iterative reconstruction technique (MBIR) tuned for the myocardium on myocardial computed tomography late enhancement (CT-LE). METHODS Twenty-eight patients who underwent myocardial CT-LE and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) within 1 year were retrospectively enrolled. Myocardial CT-LE was performed using a 320-row CT with low tube voltage (80 kVp). Myocardial CT-LE images were scanned 7 min after CT angiography (CTA) without additional contrast medium. All myocardial CT-LE images were reconstructed with hybrid iterative reconstruction (HIR), conventional MBIR (MBIR_cardiac), and new MBIR tuned for the myocardium (MBIR_myo). Qualitative (5-grade scale) scores and quantitative parameters (signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]) were assessed as image quality. The sensitivity, specificity, and accuracy of myocardial CT-LE were evaluated at the segment level using an American Heart Association (AHA) 16-segment model, with LGE-MRI as a reference standard. These results were compared among the different CT image reconstructions. RESULTS In 28 patients with 448 segments, 160 segments were diagnosed with positive by LGE-MRI. In the qualitative assessment of myocardial CT-LE, the mean image quality scores were 2.9 ± 1.2 for HIR, 3.0 ± 1.1 for MBIR_cardiac, and 4.0 ± 1.0 for MBIR_myo. MBIR_myo showed a significantly higher score than HIR (P < 0.001) and MBIR_cardiac (P = 0.018). In the quantitative image quality assessment of myocardial CT-LE, the median image SNR was 10.3 (9.1-11.1) for HIR, 10.8 (9.8-12.1) for MBIR_cardiac, and 16.8 (15.7-18.4) for MBIR_myo. The median image CNR was 3.7 (3.0-4.6) for HIR, 3.8 (3.2-5.1) for MBIR_cardiac, and 6.4 (5.0-7.7) for MBIR_myo. MBIR_myo significantly improved the SNR and CNR of CT-LE compared to HIR and MBIR_cardiac (P < 0.001). The sensitivity, specificity, and accuracy for the detection of myocardial CT-LE were 70%, 92%, and 84% for HIR; 71%, 92%, and 85% for MBIR_cardiac; and 84%, 92%, and 89% for MBIR_myo, respectively. MBIR_myo showed significantly higher image quality, sensitivity, and accuracy than the others (P < 0.05). CONCLUSIONS MBIR tuned for myocardium improved image quality and diagnostic performance for myocardial CT-LE assessment.
Collapse
Affiliation(s)
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuta Yamamoto
- Department of Radiology, Saiseikai Matsuyama Hospital, Matsuyama City, Ehime Prefecture
| | - Hikaru Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara City, Tochigi Prefecture
| | - Shigehiro Miyazaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Shinji Inaba
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| |
Collapse
|
2
|
Kato S, Misumi Y, Horita N, Yamamoto K, Utsunomiya D. Clinical Utility of Computed Tomography-Derived Myocardial Extracellular Volume Fraction: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2024; 17:516-528. [PMID: 37999657 DOI: 10.1016/j.jcmg.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Computed tomography (CT)-derived extracellular volume fraction (ECV) is a noninvasive method to quantify myocardial fibrosis. Although studies suggest CT is a suitable measure of ECV, clinical use remains limited. OBJECTIVES A meta-analysis was performed to determine the clinical value of CT-derived ECV in cardiovascular diseases. METHODS Electronic database searches of PubMed, Web of Science Core Collection, Cochrane advanced search, and EMBASE were performed. The most pivotal analysis entailed the comparison of ECV ascertained through CT-ECV among the control, aortic stenosis, and cardiac amyloidosis cohorts. The diagnostic test accuracy for detecting cardiac amyloidosis was assessed using summary receiver-operating characteristics curve. RESULTS Pooled CT-derived ECV values were 28.5% (95% CI: 27.3%-29.7%) in the control, 31.9% (95% CI: 30.2%-33.8%) in the aortic stenosis, and 48.9% (95% CI: 44.5%-53.3%) in the cardiac amyloidosis group. ECV was significantly elevated in aortic stenosis (P = 0.002) (vs controls) but further elevated in cardiac amyloidosis (P < 0.001) (vs aortic stenosis). CT-derived ECV had a high diagnostic accuracy for cardiac amyloidosis, with sensitivity of 92.8% (95% CI: 86.7%-96.2%), specificity of 84.8% (95% CI: 68.6%-93.4%), and area under the summary receiver-operating characteristic curve of 0.94 (95% CI: 0.88-1.00). CONCLUSIONS This study is the first comprehensive systematic review and meta-analysis of CT-derived ECV evaluation in cardiac disease. The high diagnostic accuracy of CT-ECV suggests the usefulness of CT-ECV in the diagnosis of cardiac amyloidosis in preoperative CT planning for transcatheter aortic valve replacement.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuka Misumi
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Oyama-Manabe N, Oda S, Ohta Y, Takagi H, Kitagawa K, Jinzaki M. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr 2024; 18:3-10. [PMID: 38218665 DOI: 10.1016/j.jcct.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Computed tomography late enhancement (CT-LE) is emerging as a non-invasive technique for cardiac diagnosis with wider accessibility compared to MRI, despite its typically lower contrast-to-noise ratio. Optimizing CT-LE image quality necessitates a thorough methodology addressing contrast administration, timing, and radiation dose, alongside a robust understanding of extracellular volume (ECV) quantification methods. This review summarizes CT-LE protocols, clinical utility, and advances in ECV measurement through both single-energy and dual-energy CT. It also highlights photon-counting detector CT technology as an innovative means to potentially improve image quality and reduce radiation exposure.
Collapse
Affiliation(s)
- Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidenobu Takagi
- Department of Advanced Radiological Imaging Collaborative Research, Tohoku University, Sendai, Japan; Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Hospital, Tsu, Japan.
| | | |
Collapse
|
4
|
Gerrits W, Danad I, Velthuis B, Mushtaq S, Cramer MJ, van der Harst P, van Slochteren FJ, Meine M, Suchá D, Guglielmo M. Cardiac CT in CRT as a Singular Imaging Modality for Diagnosis and Patient-Tailored Management. J Clin Med 2023; 12:6212. [PMID: 37834855 PMCID: PMC10573271 DOI: 10.3390/jcm12196212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Between 30-40% of patients with cardiac resynchronization therapy (CRT) do not show an improvement in left ventricular (LV) function. It is generally known that patient selection, LV lead implantation location, and device timing optimization are the three main factors that determine CRT response. Research has shown that image-guided CRT placement, which takes into account both anatomical and functional cardiac properties, positively affects the CRT response rate. In current clinical practice, a multimodality imaging approach comprised of echocardiography, cardiac magnetic resonance imaging, or nuclear medicine imaging is used to capture these features. However, with cardiac computed tomography (CT), one has an all-in-one acquisition method for both patient selection and the division of a patient-tailored, image-guided CRT placement strategy. This review discusses the applicability of CT in CRT patient identification, selection, and guided placement, offering insights into potential advancements in optimizing CRT outcomes.
Collapse
Affiliation(s)
- Willem Gerrits
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ibrahim Danad
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Birgitta Velthuis
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Frebus J. van Slochteren
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- CART-Tech BV, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Dominika Suchá
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, 2545 AA The Hague, The Netherlands
| |
Collapse
|
5
|
Myocardial extracellular volume assessment at CT in hospitalized COVID-19 patients with regards to pulmonary embolism. Eur J Radiol 2023; 163:110809. [PMID: 37062205 PMCID: PMC10079318 DOI: 10.1016/j.ejrad.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Purpose To evaluate myocardial status through the assessment of extracellular volume (ECV) calculated at computed tomography (CT) in patients hospitalized for novel coronavirus disease (COVID-19), with regards to the presence of pulmonary embolism (PE) as a risk factor for cardiac dysfunction. Method Hospitalized patients with COVID-19 who underwent contrast-enhanced CT at our institution were retrospectively included in this study and grouped with regards to the presence of PE. Unenhanced and portal venous phase scans were used to calculate ECV by placing regions of interest in the myocardial septum and left ventricular blood pool. ECV values were compared between patients with and without PE, and correlations between ECV values and clinical or technical variables were subsequently appraised. Results Ninety-four patients were included, 63/94 of whom males (67%), with a median age of 70 (IQR 56−76 years); 28/94 (30%) patients presented with PE. Patients with PE had a higher myocardial ECV than those without (33.5%, IQR 29.4−37.5% versus 29.8%, IQR 25.1−34.0%; p = 0.010). There were no correlations between ECV and patients’ age (p = 0.870) or sex (p = 0.122), unenhanced scan voltage (p = 0.822), portal phase scan voltage (p = 0.631), overall radiation dose (p = 0.569), portal phase scan timing (p = 0.460), and contrast agent dose (p = 0.563). Conclusions CT-derived ECV could help identify COVID-19 patients at higher risk of cardiac dysfunction, especially when related to PE, to potentially plan a dedicated, patient-tailored clinical approach.
Collapse
|
6
|
Ishiyama M, Kurita T, Takafuji M, Sato K, Sugiura E, Nakamori S, Fujimoto N, Kitagawa K, Sakuma H, Dohi K. The cardiac computed tomography-derived extracellular volume fraction predicts patient outcomes and left ventricular mass reductions after transcatheter aortic valve implantation for aortic stenosis. J Cardiol 2022; 81:476-484. [PMID: 36503064 DOI: 10.1016/j.jjcc.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) improved outcome of patients with severe aortic valve stenosis (AS). Myocardial fibrosis is associated with AS-related pathological left ventricular (LV) remodeling and predicts cardiovascular mortality after TAVI. The present study aimed to investigate the impact of preoperative extracellular volume (ECV) assessed by computed tomography (CT) on left ventricular mass (LVM) regression and clinical outcomes in severe AS patients after TAVI. METHODS We examined 71 consecutive severe AS patients who underwent CT with ECV determination before TAVI. ECV was calculated as the ratio of the change in Hounsfield units in the myocardium and LV blood before and after contrast administration, multiplied by (1-hematocrit). Delayed scan was performed at 5 min after contrast injection. Echocardiography was performed before and 6 months after TAVI. The primary endpoint was heart failure (HF) hospitalization after TAVI. Patients were divided into two subgroups according to the median value of global ECV with 32 % (Low-ECV group: n = 35, and High-ECV group: n = 36). RESULTS No significant differences were observed in background characteristics between the 2 groups. However, the preoperative LV ejection fraction and LVM index were similar between the 2 groups, the Low-ECV group had greater LVM index reduction than the High-CV group after 6 months (p < 0.001). Kaplan-Meier curves demonstrated that the High-ECV group had significantly higher rate of HF hospitalization than the Low-ECV group (p = 0.016). In addition, multivariate analyses identified high global ECV as an independent predictor of HF hospitalization (HR 10.8, 95 % confidence interval 1.36 to 84.8, p = 0.024). CONCLUSION The low preoperative ECV assessed by CT is associated with the greater LVM regression, and predict better outcome in AS patients after TAVI.
Collapse
Affiliation(s)
- Masaki Ishiyama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Masafumi Takafuji
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kei Sato
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Emiyo Sugiura
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
7
|
Nishii T, Kobayashi T, Tanaka H, Kotoku A, Ohta Y, Morita Y, Umehara K, Ota J, Horinouchi H, Ishida T, Fukuda T. Deep Learning-based Post Hoc CT Denoising for Myocardial Delayed Enhancement. Radiology 2022; 305:82-91. [PMID: 35762889 DOI: 10.1148/radiol.220189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background To improve myocardial delayed enhancement (MDE) CT, a deep learning (DL)-based post hoc denoising method supervised with averaged MDE CT data was developed. Purpose To assess the image quality of denoised MDE CT images and evaluate their diagnostic performance by using late gadolinium enhancement (LGE) MRI as a reference. Materials and methods MDE CT data obtained by averaging three acquisitions with a single breath hold 5 minutes after the contrast material injection in patients from July 2020 to October 2021 were retrospectively reviewed. Preaveraged images obtained in 100 patients as inputs and averaged images as ground truths were used to supervise a residual dense network (RDN). The original single-shot image, standard averaged image, RDN-denoised original (DLoriginal) image, and RDN-denoised averaged (DLave) image of holdout cases were compared. In 40 patients, the CT value and image noise in the left ventricular cavity and myocardium were assessed. The segmental presence of MDE in the remaining 40 patients who underwent reference LGE MRI was evaluated. The sensitivity, specificity, and accuracy of each type of CT image and the improvement in accuracy achieved with the RDN were assessed using odds ratios (ORs) estimated with the generalized estimation equation. Results Overall, 180 patients (median age, 66 years [IQR, 53-74 years]; 107 men) were included. The RDN reduced image noise to 28% of the original level while maintaining equivalence in the CT values (P < .001 for all). The sensitivity, specificity, and accuracy of the original images were 77.9%, 84.4%, and 82.3%, of the averaged images were 89.7%, 87.9%, and 88.5%, of the DLoriginal images were 93.1%, 87.5%, and 89.3%, and of the DLave images were 95.1%, 93.1%, and 93.8%, respectively. DLoriginal images showed improved accuracy compared with the original images (OR, 1.8 [95% CI: 1.2, 2.9]; P = .011) and DLave images showed improved accuracy compared with the averaged images (OR, 2.0 [95% CI: 1.2, 3.5]; P = .009). Conclusion The proposed denoising network supervised with averaged CT images reduced image noise and improved the diagnostic performance for myocardial delayed enhancement CT. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
Collapse
Affiliation(s)
- Tatsuya Nishii
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takuma Kobayashi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironori Tanaka
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akiyuki Kotoku
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasutoshi Ohta
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiaki Morita
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kensuke Umehara
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Junko Ota
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroki Horinouchi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Ishida
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuya Fukuda
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Takafuji M, Kitagawa K, Nakamura S, Kokawa T, Kagawa Y, Fujita S, Fukuma T, Fujii E, Dohi K, Sakuma H. Hyperemic myocardial blood flow in patients with atrial fibrillation before and after catheter ablation: A dynamic stress CT perfusion study. Physiol Rep 2021; 9:e15123. [PMID: 34806340 PMCID: PMC8606864 DOI: 10.14814/phy2.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) patients without coronary artery stenosis often show clinical evidence of ischemia. However myocardial perfusion in AF patients has been poorly studied. The purposes of this study were to investigate altered hyperemic myocardial blood flow (MBF) in patients with AF compared with risk-matched controls in sinus rhythm (SR), and to evaluate hyperemic MBF before and after catheter ablation using dynamic CT perfusion. METHODS Hyperemic MBF was quantified in 87 patients with AF (44 paroxysmal, 43 persistent) scheduled for catheter ablation using dynamic CT perfusion, and compared with hyperemic MBF in 87 risk-matched controls in SR. Follow-up CT after ablation was performed in 49 AF patients. RESULTS Prior to ablation, hyperemic MBF of patients in AF during the CT (1.29 ± 0.34 ml/mg/min) was significantly lower than in patients in SR (1.49 ± 0.26 ml/g/min, p = 0.002) or matched controls (1.65 ± 0.32 ml/g/min, p < 0.001); no significant difference was seen between patients in SR during the CT and matched controls (vs. 1.50 ± 0.31 ml/g/min, p = 0.815). In patients in AF during the pre-ablation CT (n = 24), hyperemic MBF significantly increased after ablation from 1.30 ± 0.35 to 1.53 ± 0.17 ml/g/min (p = 0.004); whereas in patients in SR during the pre-ablation CT (n = 25), hyperemic MBF did not change significantly after ablation (from 1.46 ± 0.26 to 1.49 ± 0.27 ml/g/min, p = 0.499). CONCLUSION In the current study using stress perfusion CT, hyperemic MBF in patients with AF during pre-ablation CT was significantly lower than that in risk-matched controls, and improved significantly after restoration of SR by catheter ablation, indicating that MBF abnormalities in AF patients are caused primarily by AF itself.
Collapse
Affiliation(s)
- Masafumi Takafuji
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Kakuya Kitagawa
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Satoshi Nakamura
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Takanori Kokawa
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| | - Yoshihiko Kagawa
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Satoshi Fujita
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Tomoyuki Fukuma
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Eitaro Fujii
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Kaoru Dohi
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuJapan
| | - Hajime Sakuma
- Department of RadiologyMie University Graduate School of MedicineTsuJapan
| |
Collapse
|
9
|
Takafuji M, Kitagawa K, Ishida M, Ichikawa Y, Nakamura S, Nakamori S, Kurita T, Dohi K, Sakuma H. Clinical Validation of the Accuracy of Absolute Myocardial Blood Flow Quantification with Dual-Source CT Using 15O-Water PET. Radiol Cardiothorac Imaging 2021; 3:e210060. [PMID: 34778781 PMCID: PMC8581586 DOI: 10.1148/ryct.2021210060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the fitting equation that can correct for the underestimation of myocardial blood flow (MBF) measurement by using dynamic CT perfusion (CTP) with dual-source CT (MBFCT), using MBF with oxygen 15-labeled water (15O-water) PET (MBFPET) as a reference, and to determine the accuracy of corrected MBFCT (MBFCT-corrected) compared with MBFPET in a separate set of participants. MATERIALS AND METHODS In this prospective study (reference no. 2466), 34 participants (mean age, 70 years ± 8 [standard deviation]; 27 men) known or suspected to have coronary artery disease underwent dynamic stress CTP and stress 15O-water PET between January 2014 and December 2018. The participants were randomly assigned to either a pilot group (n = 17), to determine the fitting equation on the basis of the generalized Renkin-Crone model that can explain the relation between MBFCT and MBFPET, or to a validation group (n = 17), to validate MBFCT-corrected compared with MBFPET. The agreement between MBFCT-corrected and MBFPET was evaluated by intraclass correlation and Bland-Altman analysis. RESULTS In the pilot group, MBFCT was lower than MBFPET (1.24 mL/min/g ± 0.28 vs 2.51 mL/min/g ± 0.89, P < .001) at the segment level. The relationship between MBFCT and MBFCT-corrected was represented as MBFCT = MBFCT-corrected × {1-exp[-(0.11 × MBFCT-corrected + 1.54)/MBFCT-corrected]}. In the validation group, MBFCT-corrected was 2.66 mL/min/g ± 1.93, and MBFPET was 2.68 mL/min/g ± 1.87 at the vessel level. MBFCT-corrected showed an excellent agreement with MBFPET (intraclass correlation coefficient = 0.93 [95% CI: 0.87, 0.96]). The measurement bias of MBFCT-corrected and MBFPET was -0.02 mL/min/g ± 0.74. CONCLUSION Underestimation of MBF by CT was successfully corrected with a correction method that was based on contrast kinetics in the myocardium.Keywords: CT, CT-Perfusion, PET, Cardiac, Heart Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Masafumi Takafuji
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Kakuya Kitagawa
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masaki Ishida
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasutaka Ichikawa
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Satoshi Nakamura
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shiro Nakamori
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Tairo Kurita
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Kaoru Dohi
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hajime Sakuma
- From the Department of Radiology (M.T., K.K., M.I., Y.I., S.
Nakamura, H.S.) and Department of Cardiology and Nephrology (S. Nakamori, T.K.,
K.D.), Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
10
|
Gupta S, Ge Y, Singh A, Gräni C, Kwong RY. Multimodality Imaging Assessment of Myocardial Fibrosis. JACC Cardiovasc Imaging 2021; 14:2457-2469. [PMID: 34023250 DOI: 10.1016/j.jcmg.2021.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis, seen in ischemic and nonischemic cardiomyopathies, is associated with adverse cardiac outcomes. Noninvasive imaging plays a key role in early identification and quantification of myocardial fibrosis with the use of an expanding array of techniques including cardiac magnetic resonance, computed tomography, and nuclear imaging. This review discusses currently available noninvasive imaging techniques, provides insights into their strengths and limitations, and examines novel developments that will affect the future of noninvasive imaging of myocardial fibrosis.
Collapse
Affiliation(s)
- Sumit Gupta
- Department of Radiology Brigham and Women's Hospital, Boston, Massachusetts, USA; Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yin Ge
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Amitoj Singh
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christoph Gräni
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Yamada A, Kitagawa K, Nakamura S, Takafuji M, Goto Y, Okamoto R, Dohi K, Sakuma H. Quantification of extracellular volume fraction by cardiac computed tomography for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Sci Rep 2020; 10:15367. [PMID: 32958834 PMCID: PMC7506012 DOI: 10.1038/s41598-020-72417-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
Extent of myocardial fibrosis in hemodialysis patients has been associated with poor prognosis. Myocardial extracellular volume (ECV) quantification using contrast enhanced cardiac computed tomography (CT) is a novel method to determine extent of myocardial fibrosis. Cardiac CT-based myocardial ECV in hemodialysis patients with those of propensity-matched non-hemodialysis control subjects were compared. Twenty hemodialysis patients (mean age, 67.4 ± 9.6 years; 80% male) and 20 propensity-matched non-hemodialysis controls (mean age, 66.3 ± 9.1 years; 85% male) who underwent comprehensive cardiac CT consisted of calcium scoring, coronary CT angiography, stress perfusion CT and delayed enhancement CT were evaluated. Myocardial ECV was significantly greater in the hemodialysis group than in the control group (33.8 ± 4.7% versus 26.6 ± 2.9%; P < 0.0001). In the hemodialysis group, modest correlation was evident between myocardial ECV and left atrial volume index (r = 0.54; P = 0.01), while there was no correlation between myocardial ECV and other cardiac parameters including left ventricular mass index and severity of myocardial ischemia. Cardiac CT-based myocardial ECV may offer a potential imaging biomarker for myocardial fibrosis in HD patients.
Collapse
Affiliation(s)
- Akimasa Yamada
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | | | | | - Yoshitaka Goto
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology, Mie University Hospital, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology, Mie University Hospital, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Japan
| |
Collapse
|