1
|
Han W, Liang L, Han T, Wang Z, Shi L, Li Y, Chang F, Cao Y, Zhang C, Wu H. Diagnostic performance of the quantitative flow ratio and CT-FFR for coronary lesion-specific ischemia. Sci Rep 2024; 14:16969. [PMID: 39043839 PMCID: PMC11266565 DOI: 10.1038/s41598-024-68212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
Fractional flow reserve (FFR) has become the gold standard for evaluating coronary lesion-specific ischemia. However, FFR is an invasive method that may cause possible complications in the coronary artery and requires expensive equipment, which limits its use. Promising noninvasive diagnostic methods, such as computed tomography angiography-derived FFR (CT-FFR) and the quantitative flow ratio (QFR), have been proposed. In this study, we evaluated the diagnostic performance of the QFR and CT-FFR in predicting coronary lesion-specific ischemia, with the FFR serving as the reference standard. Patients with suspected or known coronary artery disease who underwent coronary CT angiography revealing 30-90% diameter stenosis in the main coronary artery (≥ 2.0 mm reference diameter) were enrolled. The FFR was measured during invasive coronary angiography (within 15 days after coronary CT angiography). An FFR ≤ 0.8 was the reference standard for coronary lesion-specific ischemia. A total of 103 vessels from 92 consecutive patients (aged 59.8 ± 9.2 years; 60.9% were men) were evaluated. The diagnostic performance of a QFR ≤ 0.80 for predicting coronary lesion-specific ischemia demonstrated good diagnostic accuracy, sensitivity, and specificity (92.2%, 87.2%, and 96.4%, respectively), with an area under the receiver operating characteristic curve (AUC) of 0.987 (P < 0.0001). The diagnostic performance of a CT-FFR ≤ 0.80 for predicting coronary lesion-specific ischemia also demonstrated good diagnostic accuracy, sensitivity, and specificity (96.1%, 95.7%, and 96.4%, respectively), with an AUC of 0.967 (P < 0.0001). However, there was no significant difference in the AUC between a QFR ≤ 0.80 and a CT-FFR ≤ 0.80 for predicting coronary lesion-specific ischemia (P = 0.319). There was an excellent correlation between the QFR and FFR (r = 0.856, P < 0.0001). The CT-FFR and FFR also showed a good direct correlation (r = 0.816, P < 0.0001). The QFR and CT-FFR are strongly correlated with the FFR and can provide excellent clinical diagnostic performance for coronary lesion-specific ischemia detection.
Collapse
Affiliation(s)
- Wenqi Han
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lei Liang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Zhenyu Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lei Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yuan Li
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Fengjun Chang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yiwei Cao
- Department of Electrocardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Chunyan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Haoyu Wu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
2
|
Edrisnia H, Sarkhosh MH, Mohebbi B, Parhizgar SE, Alimohammadi M. Non-invasive fractional flow reserve estimation in coronary arteries using angiographic images. Sci Rep 2024; 14:15640. [PMID: 38977740 PMCID: PMC11231276 DOI: 10.1038/s41598-024-65626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Coronary artery disease is the leading global cause of mortality and Fractional Flow Reserve (FFR) is widely regarded as the gold standard for assessing coronary artery stenosis severity. However, due to the limitations of invasive FFR measurements, there is a pressing need for a highly accurate virtual FFR calculation framework. Additionally, it's essential to consider local haemodynamic factors such as time-averaged wall shear stress (TAWSS), which play a critical role in advancement of atherosclerosis. This study introduces an innovative FFR computation method that involves creating five patient-specific geometries from two-dimensional coronary angiography images and conducting numerical simulations using computational fluid dynamics with a three-element Windkessel model boundary condition at the outlet to predict haemodynamic distribution. Furthermore, four distinct boundary condition methodologies are applied to each geometry for comprehensive analysis. Several haemodynamic features, including velocity, pressure, TAWSS, and oscillatory shear index are investigated and compared for each case. Results show that models with average boundary conditions can predict FFR values accurately and observed errors between invasive FFR and virtual FFR are found to be less than 5%.
Collapse
Affiliation(s)
- Hadis Edrisnia
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Bahram Mohebbi
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Parhizgar
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mona Alimohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Santos LDM, Campos CM, Garcia-Garcia HM, Godinho RR, Lopes MAAM, Seleme VB, Côrtes RS, Mendes GDAC, Rosa VEE, Lopes NHM, de Brito Junior FS, Abizaid AAC. Concordance between vessel-specific and vascular territory coronary functional assessment: A comparison of quantitative flow ratio and myocardial perfusion scintigraphy. Catheter Cardiovasc Interv 2024. [PMID: 38558510 DOI: 10.1002/ccd.31021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Quantitative flow ratio (QFR) and myocardial perfusion scintigraphy (MPS) are utilized for assessing coronary artery disease (CAD) significance. We aimed to analyze their concordance and prognostic impact. AIMS We aimed to analyze the concordance between QFR and MPS and their risk stratification. METHODS Patients with invasive coronary angiography and MPS were categorized as concordant if QFR ≤ 0.80 and summed difference score (SDS) ≥ 4 or if QFR > 0.80 and SDS < 4; otherwise, they were discordant. Concordance was classified by coronary territory involvement: total (three territories), partial (two territories), poor (one territory), and total discordance (zero territories). Leaman score assessed coronary atherosclerotic burden. RESULTS 2010 coronary territories (670 patients) underwent joint QFR and MPS analysis. MPS area under the curve for QFR ≤ 0.80 was 0.637. Concordance rates were total (52.5%), partial (29.1%), poor (15.8%), and total discordance (2.6%). Most concordance occurred in patients without significant CAD or with single-vessel disease (89.5%), particularly without MPS perfusion defects (91.5%). Leaman score (odds ratio [OR]: 0.839, 95% confidence interval [CI]: 0.805-0.875, p < 0.001) and MPS perfusion defect (summed stress score [SSS] ≥ 4) (OR: 0.355, 95% CI: 0.211-0.596, p < 0.001) were independent predictors for discordance. After 1400 days, no significant difference in death/myocardial infarction was observed based on MPS assessment, but Leaman score, functional Leaman score, and average QFR identified higher risk patients. CONCLUSIONS MPS showed good overall accuracy in assessing QFR significance but substantial discordance existed. Predictors for discordance included higher atherosclerotic burden and MPS perfusion defects (SSS ≥ 4). Leaman score, QFR-based functional Leaman score, and average QFR provided better risk stratification for all-cause death and myocardial infarction than MPS.
Collapse
Affiliation(s)
- Luciano de Moura Santos
- Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
- Department of Interventional Cardiology, Hospital Santa Lucia, Brasilia, Brazil
| | - Carlos M Campos
- Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
- Instituto Prevent Senior, Sao Paulo, Brazil
| | - Hector Manuel Garcia-Garcia
- Instituto Prevent Senior, Sao Paulo, Brazil
- Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | | | | | | | - Rafael Silva Côrtes
- Department of Interventional Cardiology, Hospital Santa Lucia, Brasilia, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Kotoku N, Ninomiya K, Ding D, O'Leary N, Tobe A, Miyashita K, Masuda S, Kageyama S, Garg S, Leipsic JA, Mushtaq S, Andreini D, Tanaka K, de Mey J, Wijns W, Tu S, Piazza N, Onuma Y, Serruys PW. Murray law-based quantitative flow ratio to assess left main bifurcation stenosis: selecting the angiographic projection matters. Int J Cardiovasc Imaging 2024; 40:195-206. [PMID: 37870715 PMCID: PMC10774209 DOI: 10.1007/s10554-023-02974-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Murray law-based quantitative flow ratio (µQFR) assesses fractional flow reserve (FFR) in bifurcation lesions using a single angiographic view, enhancing the feasibility of analysis; however, accuracy may be compromised in suboptimal angiographic projections. FFRCT is a well-validated non-invasive method measuring FFR from coronary computed tomographic angiography (CCTA). We evaluated the feasibility of µQFR in left main (LM) bifurcations, the impact of the optimal/suboptimal fluoroscopic view with respect to CCTA, and its diagnostic concordance with FFRCT. In 300 patients with three-vessel disease, the values of FFRCT and µQFR were compared at distal LM, proximal left anterior descending artery (pLAD) and circumflex artery (pLCX). The optimal viewing angle of LM bifurcation was defined on CCTA by 3-dimensional coordinates and converted into a 2-dimensional fluoroscopic view. The best fluoroscopic projection was considered the closest angulation to the optimal viewing angle on CCTA. µQFR was successfully computed in 805 projections. In the best projections, µQFR sensitivity was 88.2% (95% CI 76.1-95.6) and 84.8% (71.1-93.7), and specificity was 96.8% (93.8-98.6) and 97.2% (94.4-98.9), in pLAD and pLCX, respectively, with regard to FFRCT. The AUC of µQFR for predicting FFRCT ≤ 0.80 tended to be improved using the best versus suboptimal projections (0.94 vs. 0.89 [p = 0.048] in pLAD; 0.94 vs. 0.88 [p = 0.075] in pLCX). Computation of µQFR in LM bifurcations using a single angiographic view showed high feasibility from post-hoc analysis of coronary angiograms obtained for clinical purposes. The fluoroscopic viewing angle influences the diagnostic performance of physiological assessment using a single angiographic view.
Collapse
Affiliation(s)
- Nozomi Kotoku
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Kai Ninomiya
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Daixin Ding
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Neil O'Leary
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Akihiro Tobe
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Kotaro Miyashita
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Shinichiro Masuda
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Shigetaka Kageyama
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, UK
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Saima Mushtaq
- Departments of Cardiovascular Imaging and Surgery, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Daniele Andreini
- Division of Cardiology and Cardiac Imaging, IRCCS Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, VUB, Brussels, Belgium
| | - Johan de Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, VUB, Brussels, Belgium
| | - William Wijns
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nicolo Piazza
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC, Canada
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
5
|
Sugimoto K, Takahashi K, Okune M, Ueno M, Fujita T, Doi H, Tobaru T, Takanashi S, Kinoshita Y, Okawa Y, Fuku Y, Komiya T, Tsujita K, Fukui T, Shimokawa T, Watanabe Y, Kozuma K, Sakaguchi G, Nakazawa G. Impact of quantitative flow ratio on graft function in patients undergoing coronary artery bypass grafting. Cardiovasc Interv Ther 2023; 38:406-413. [PMID: 37017900 DOI: 10.1007/s12928-023-00929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Recent studies showed that preoperative functional assessment with fractional flow reserve (FFR) could predict a long-term patency of arterial bypass grafts in patients with coronary artery bypass grafting (CABG). Quantitative flow ratio (QFR) is a novel angiography-based approach to estimate FFR. This study aimed to investigate whether preoperative QFR could discriminate arterial bypass function at 1 year after surgery. The PRIDE-METAL registry was a prospective, multicenter observational study that enrolled 54 patients with multivessel coronary artery disease. By protocol, left coronary stenoses were revascularized by CABG with arterial grafts, whereas right coronary stenoses were treated with coronary stenting. Follow-up angiography at 1 year after surgery was scheduled to assess arterial graft patency. QFR was performed using index angiography by certified analysts, blinded to bypass graft function. The primary end point of this sub-study was the discriminative ability of QFR for arterial graft function, as assessed by receiver-operating characteristic curve. Among 54 patients enrolled in the PRIDE-METAL registry, index and follow-up angiography was available in 41 patients with 97 anastomoses. QFR were analyzed in 35 patients (71 anastomoses) with an analyzability of 85.5% (71/83). Five bypass grafts were found to be non-functional at 1 year. The diagnostic performance of QFR was substantial (area under the curve: 0.89; 95% confidence interval: 0.83 to 0.96) with an optimal cutoff of 0.76 to predict functionality of bypass grafts. Preoperative QFR is highly discriminative for predicting postoperative arterial graft function.Trial registration: Clinical.gov reference: NCT02894255.
Collapse
Affiliation(s)
- Keishiro Sugimoto
- Department of Cardiology, Kindai University Faculty of Medicine, 377-2, Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kuniaki Takahashi
- Department of Cardiology, Kindai University Faculty of Medicine, 377-2, Onohigashi, Osakasayama, Osaka, 589-8511, Japan.
| | - Mana Okune
- Department of Cardiology, Kindai University Faculty of Medicine, 377-2, Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Masafumi Ueno
- Department of Cardiology, Kindai University Faculty of Medicine, 377-2, Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Tsutomu Fujita
- Department of Cardiology, Sapporo Cardiovascular Clinic, Sapporo Heart Center, Sapporo, Japan
| | - Hirosato Doi
- Department of Cardiovascular Surgery, Sapporo Cardiovascular Clinic, Sapporo Heart Center, Sapporo, Japan
| | - Tetsuya Tobaru
- Department of Cardiology, Sakakibara Heart Insutitute, Tokyo, Japan
| | - Shuichiro Takanashi
- Department of Cardiovascular Surgery, Sakakibara Heart Institute, Tokyo, Japan
| | - Yoshihisa Kinoshita
- Department of Cardiovascular Medicine, Toyohashi Heart Center, Toyohashi, Japan
| | - Yasuhide Okawa
- Department of Cardiovascular Surgery, Toyohashi Heart Center, Toyohashi, Japan
| | - Yasushi Fuku
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Tatsuhiko Komiya
- Department of Cardiovascular Surgery, Kurashiki Central Hospital, Kurashiki, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Fukui
- Department of Cardiovascular Surgery, Graduate School of Medicine Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoki Shimokawa
- Department of Cardiovascular Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ken Kozuma
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Genichi Sakaguchi
- Department of Cardiovascular Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Gaku Nakazawa
- Department of Cardiology, Kindai University Faculty of Medicine, 377-2, Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
6
|
Pontone G, Mushtaq S, Al'Aref SJ, Andreini D, Baggiano A, Canan A, Cavalcante JL, Chelliah A, Chen M, Choi A, Damini D, De Cecco CN, Farooqi KM, Ferencik M, Feuchtner G, Hecht H, Gransar H, Kolossváry M, Leipsic J, Lu MT, Marwan M, Ng MY, Maurovich-Horvat P, Nagpal P, Nicol E, Weir-McCall J, Whelton SP, Williams MC, Reid A, Fairbairn TA, Villines T, Vliegenthart R, Arbab-Zadeh A. The journal of cardiovascular computed tomography: A year in review: 2022. J Cardiovasc Comput Tomogr 2023; 17:86-95. [PMID: 36934047 DOI: 10.1016/j.jcct.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/20/2023]
Abstract
This review aims to summarize key articles published in the Journal of Cardiovascular Computed Tomography (JCCT) in 2022, focusing on those that had the most scientific and educational impact. The JCCT continues to expand; the number of submissions, published manuscripts, cited articles, article downloads, social media presence, and impact factor continues to grow. The articles selected by the Editorial Board of the JCCT in this review highlight the role of cardiovascular computed tomography (CCT) to detect subclinical atherosclerosis, assess the functional relevance of stenoses, and plan invasive coronary and valve procedures. A section is dedicated to CCT in infants and other patients with congenital heart disease, in women, and to the importance of training in CT. In addition, we highlight key consensus documents and guidelines published in JCCT last year. The Journal values the tremendous work by authors, reviewers, and editors to accomplish these contributions.
Collapse
Affiliation(s)
- Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Subhi J Al'Aref
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniele Andreini
- Division of Cardiology and Cardiac Imaging, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Arzu Canan
- Department of Radiology, Division of Cardiothoracic Imaging, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joao L Cavalcante
- Allina Health Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, USA
| | - Anjali Chelliah
- Department of Pediatrics, Division of Pediatric Cardiology, Goryeb Children's Hospital/Atlantic Medical Center, Morristown, NJ, USA; Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Choi
- Cardiology and Radiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Dey Damini
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Kanwal M Farooqi
- Division of Pediatric Cardiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY, USA
| | - Maros Ferencik
- MCR, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gudrun Feuchtner
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harvey Hecht
- Ican School of Medicine at Mount Sinai, Mount Sinai Morningside Medical Center, NYC, USA
| | - Heidi Gransar
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Márton Kolossváry
- Gottsegen National Cardiovascular Center, Budapest, Hungary; Physiological Controls Research Center, University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Jonathon Leipsic
- Department of Radiology and Medicine (Cardiology) UBC, Vancouver, Canada
| | - Michael T Lu
- Cardiovascular Imaging Research Center (CIRC), MGH Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Mohamed Marwan
- Cardiology Department, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Prashant Nagpal
- Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ed Nicol
- Royal Brompton Hospital, Sydney Street, London and School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | | | - Seamus P Whelton
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, 21287, USA
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anna Reid
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester, UK
| | - Timothy A Fairbairn
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, UK
| | | | - Rosemarie Vliegenthart
- Department of Radiology, University of Groningen/University Medical Center Groningen, Groningen, the Netherlands
| | - Armin Arbab-Zadeh
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Biscaglia S, Verardi FM, Tebaldi M, Guiducci V, Caglioni S, Campana R, Scala A, Marrone A, Pompei G, Marchini F, Scancarello D, Pignatelli G, D'Amore SM, Colaiori I, Demola P, Di Serafino L, Tumscitz C, Penzo C, Erriquez A, Manfrini M, Campo G. QFR-Based Virtual PCI or Conventional Angiography to Guide PCI: The AQVA Trial. JACC Cardiovasc Interv 2023; 16:783-794. [PMID: 36898939 DOI: 10.1016/j.jcin.2022.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 03/12/2023]
Abstract
BACKGROUND Post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) values ≥0.90 are associated with a low incidence of adverse events. OBJECTIVES The AQVA (Angio-based Quantitative Flow Ratio Virtual PCI Versus Conventional Angio-guided PCI in the Achievement of an Optimal Post-PCI QFR) trial aims to test whether a QFR-based virtual percutaneous coronary intervention (PCI) is superior to a conventional angiography-based PCI at obtaining optimal post-PCI QFR results. METHODS The AQVA trial is an investigator-initiated, randomized, controlled, parallel-group clinical trial. Three hundred patients (356 study vessels) undergoing PCI were randomized 1:1 to receive either QFR-based virtual PCI or angiography-based PCI (standard of care). The primary outcome was the rate of study vessels with a suboptimal post-PCI QFR value, which was defined as <0.90. Secondary outcomes were procedure duration, stent length/lesion, and stent number/patient. RESULTS Overall, 38 (10.7%) study vessels missed the prespecified optimal post-PCI QFR target. The primary outcome occurred significantly more frequently in the angiography-based group (n = 26, 15.1%) compared with the QFR-based virtual PCI group (n = 12 [6.6%]; absolute difference = 8.5%; relative difference = 57%; P = 0.009). The main cause of a suboptimal result in the angiography-based group is the underestimation of a diseased segment outside the stented one. There were no significant differences among secondary endpoints, although stent length/lesion and stent number/patient were numerically lower in the virtual PCI group (P = 0.06 and P = 0.08, respectively), whereas procedure length was higher in the virtual PCI group (P = 0.06). CONCLUSIONS The AQVA trial demonstrated the superiority of QFR-based virtual PCI over angiography-based PCI with regard to post-PCI optimal physiological results. Future larger randomized clinical trials that demonstrate the superiority of this approach in terms of clinical outcomes are warranted. (Angio-based Quantitative Flow Ratio Virtual PCI Versus Conventional Angio-guided PCI in the Achievement of an Optimal Post-PCI QFR [AQVA]; NCT04664140).
Collapse
Affiliation(s)
- Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy.
| | | | - Matteo Tebaldi
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Vincenzo Guiducci
- Cardiology Unit, Azienda Unità Sanitaria Locale, Istituti di Ricovero e Cura a Carattere Scientifico, Istituto in Tecnologie Avanzate e Modelli Assistenziali di Reggio Emilia, Reggio Emilia, Italy
| | - Serena Caglioni
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Roberta Campana
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Antonella Scala
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Andrea Marrone
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Graziella Pompei
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Federico Marchini
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Davide Scancarello
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Gianluca Pignatelli
- Cardiology Unit, Azienda Unità Sanitaria Locale, Istituti di Ricovero e Cura a Carattere Scientifico, Istituto in Tecnologie Avanzate e Modelli Assistenziali di Reggio Emilia, Reggio Emilia, Italy
| | - Sergio Musto D'Amore
- Cardiology Unit, Azienda Unità Sanitaria Locale, Istituti di Ricovero e Cura a Carattere Scientifico, Istituto in Tecnologie Avanzate e Modelli Assistenziali di Reggio Emilia, Reggio Emilia, Italy
| | - Iginio Colaiori
- Cardiology Unit, Azienda Unità Sanitaria Locale, Istituti di Ricovero e Cura a Carattere Scientifico, Istituto in Tecnologie Avanzate e Modelli Assistenziali di Reggio Emilia, Reggio Emilia, Italy
| | - Pierluigi Demola
- Cardiology Unit, Azienda Unità Sanitaria Locale, Istituti di Ricovero e Cura a Carattere Scientifico, Istituto in Tecnologie Avanzate e Modelli Assistenziali di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Di Serafino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Carlo Tumscitz
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Carlo Penzo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Andrea Erriquez
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Marco Manfrini
- Maria Cecilia Hospital, Gruppo Villa Maria Care and Research, Cotignola, Ravenna, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
8
|
FFRCT and QFR: Ready to be Used in Clinical Decision Making? J Cardiovasc Comput Tomogr 2022; 16:343-344. [DOI: 10.1016/j.jcct.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022]
|