1
|
Lupas D, Chou FY, Hakani MAA, Kuthiala I, Srikrishnaraj A, Li X, Potter N, Quon BS. The clinical effectiveness of elexacaftor/tezacaftor/ivacaftor (ETI) for people with CF without a F508del variant: A systematic review and meta-analysis. J Cyst Fibros 2024; 23:950-958. [PMID: 39048464 DOI: 10.1016/j.jcf.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Access to elexacaftor/tezacaftor/ivacaftor (ETI) for people with cystic fibrosis (PwCF) without a F508del variant is limited due to lack of clinical data supporting efficacy. METHODS In this systematic review and meta-analysis, we examined patient-level data from studies reporting the clinical response to ETI for PwCF with non-F508del CFTR variants. We searched electronic data sources including Embase, MEDLINE, and CENTRAL from January 1st, 2019 to May 14th, 2024. FINDINGS Our search results identified 4,795 studies and 20 met the eligibility criteria. 120 of 164 (73 %) individuals had a positive clinical response to ETI, defined by a sweat chloride (SwCl) decrease of ≥10 mmol/L or percent-predicted FEV1 (ppFEV1) improvement of ≥5 %. 51 unique ETI-responsive variants were represented across these 120 individuals and 27 of these variants (53 %) have not been previously approved by the U.S. FDA. For variants with at least 10 individuals treated with ETI to date, a consistent positive clinical response was observed for N1303K and G85E. For N1303K (n = 48), the median increase in ppFEV1 was 16 % (IQR: 8 %, 29 %), with a median decrease in SwCl of -9 (IQR: -4, -22) mmol/L. For G85E (n = 16), the median increase in ppFEV1 was 13.5 % (IQR: 8 %, 19 %) with a median decrease in SwCl of -46 (IQR: -39, -66) mmol/L. CONCLUSION Additional ETI-responsive variants were identified following a comprehensive review of ETI clinical use in PwCF without F508del. This data can be used by the CF community in efforts to expand the labelled indications or to help advocate for off-label ETI reimbursement.
Collapse
Affiliation(s)
- Daniel Lupas
- Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Frank Y Chou
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Ishita Kuthiala
- Schulich School of Medicine, Western University, London, Ontario, Canada
| | | | - Xuan Li
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Naomi Potter
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, Bailey V, Musisi I, LaPan A, Allaire NE, Conte J, Simon NR, Magaret AS, Raraigh KS, Cutting GR, Skach WR, Bridges RJ, Thomas PJ, Mense M. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros 2024; 23:664-675. [PMID: 38388235 DOI: 10.1016/j.jcf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.
Collapse
Affiliation(s)
- Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Linda Millen
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priyanka Bhatt
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Justin Chin
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Violaine Bailey
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Isaac Musisi
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - André LaPan
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Joshua Conte
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Noah R Simon
- University of Washington, Seattle, WA 98195-9300, USA
| | | | - Karen S Raraigh
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Garry R Cutting
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | - Robert J Bridges
- Rosalind Franklin University Medical School, Chicago, IL 60064, USA
| | - Philip J Thomas
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA.
| |
Collapse
|
3
|
Aluma BEB, Reiter J, Efrati O, Bezalel Y, Keler S, Ashkenazi M, Dagan A, Buchnik Y, Sadras I, Cohen-Cymberknoh M. Clinical efficacy of CFTR modulator therapy in people with cystic fibrosis carrying the I1234V mutation. J Cyst Fibros 2024; 23:685-689. [PMID: 38443268 DOI: 10.1016/j.jcf.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) mutation I1234V (I1234V, p.Ile1234Val, c.3700A>G), is a missense-mutation that creates a cryptic splice site, with the formation of a protein lacking 6 amino acids, that is misfolded and misprocessed. The in vitro effects of CFTR modulator (CFTRm) therapies on human bronchial cell models and intestinal organoids carrying this mutation are conflicting. The aim of this study was therefore to explore the clinical efficacy of CFTRm in people with cystic fibrosis (pwCF) carrying this mutation. METHODS This was a retrospective descriptive study of the clinical records of homozygous and compound heterozygous (none F508del) pwCF, for the I1234V mutation, that received CFTRm. Parameters explored were body mass index (BMI), forced expiratory volume in one second percent predicted (FEV1%), lung clearance index (LCI) and quantitative sweat chloride measurements. RESULTS Mean age was 38.6 ± 14 years (range 21-60). Two subjects were homozygous and five compound heterozygous, with minimal function mutations. Four were pancreatic insufficient and three pancreatic sufficient. The two homozygous subjects received Tezacaftor/Ivacaftor, the remaining Elexacaftor/Tezacaftor/Ivacaftor (ETI); treatment ranged from 6 to 12 months. Mean BMI score increased from 21.7 ± 1.3 to 23.6 ± 2.1 kg/m2 (p = 0.04); FEV1(%pred) increased by 20.14±10.2while mean change in FEV1 in the year prior to CFTRm initiation was -0.14±1.18 (p = 0.0001). Additionally, LCI 2.5% decreased from 18.7 to 14.5 (p = 0.07); sweat chloride decreased from 116±10 to 90±17 mEq/L (p = 0.017) and chronic pseudomonas airway infection was eradicated in one subject. CONCLUSIONS This study supports a clinical benefit for CFTRm therapy in pwCF carrying the I1234V mutation.
Collapse
Affiliation(s)
- Bat El Bar Aluma
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Joel Reiter
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ori Efrati
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Bezalel
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Keler
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Dagan
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Buchnik
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Sadras
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
4
|
de Souza Goncalves L, Chu T, Master R, Chhetri PD, Gao Q, Cil O. Mg2+ supplementation treats secretory diarrhea in mice by activating calcium-sensing receptor in intestinal epithelial cells. J Clin Invest 2024; 134:e171249. [PMID: 37962961 PMCID: PMC10786700 DOI: 10.1172/jci171249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.
Collapse
|
5
|
Allan KM, Astore MA, Kardia E, Wong SL, Fawcett LK, Bell JL, Visser S, Chen PC, Griffith R, Jaffe A, Sivam S, Vittorio O, Kuyucak S, Waters SA. Q1291H-CFTR molecular dynamics simulations and ex vivo theratyping in nasal epithelial models and clinical response to elexacaftor/tezacaftor/ivacaftor in a Q1291H/F508del patient. Front Mol Biosci 2023; 10:1148501. [PMID: 37325471 PMCID: PMC10267335 DOI: 10.3389/fmolb.2023.1148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 μA/cm2) and not enhanced with ETI (5.73 ± 0.48 μA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Egi Kardia
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jessica L Bell
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Simone Visser
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sheila Sivam
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
6
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
7
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
8
|
Ramalho AS, Boon M, Proesmans M, Vermeulen F, Carlon MS, De Boeck K. Assays of CFTR Function In Vitro, Ex Vivo and In Vivo. Int J Mol Sci 2022; 23:1437. [PMID: 35163362 PMCID: PMC8836180 DOI: 10.3390/ijms23031437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures.
Collapse
Affiliation(s)
- Anabela S. Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
| | - Mieke Boon
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - François Vermeulen
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium
| | - Kris De Boeck
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
9
|
Allan KM, Astore MA, Fawcett LK, Wong SL, Chen PC, Griffith R, Jaffe A, Kuyucak S, Waters SA. S945L-CFTR molecular dynamics, functional characterization and tezacaftor/ivacaftor efficacy in vivo and in vitro in matched pediatric patient-derived cell models. Front Pediatr 2022; 10:1062766. [PMID: 36467478 PMCID: PMC9709344 DOI: 10.3389/fped.2022.1062766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Cystic Fibrosis (CF) results from over 400 different disease-causing mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. These CFTR mutations lead to numerous defects in CFTR protein function. A novel class of targeted therapies (CFTR modulators) have been developed that can restore defects in CFTR folding and gating. This study aimed to characterize the functional and structural defects of S945L-CFTR and interrogate the efficacy of modulators with two modes of action: gating potentiator [ivacaftor (IVA)] and folding corrector [tezacaftor (TEZ)]. The response to these modulators in vitro in airway differentiated cell models created from a participant with S945L/G542X-CFTR was correlated with in vivo clinical outcomes of that participant at least 12 months pre and post modulator therapy. In this participants' airway cell models, CFTR-mediated chloride transport was assessed via ion transport electrophysiology. Monotherapy with IVA or TEZ increased CFTR activity, albeit not reaching statistical significance. Combination therapy with TEZ/IVA significantly (p = 0.02) increased CFTR activity 1.62-fold above baseline. Assessment of CFTR expression and maturation via western blot validated the presence of mature, fully glycosylated CFTR, which increased 4.1-fold in TEZ/IVA-treated cells. The in vitro S945L-CFTR response to modulator correlated with an improvement in in vivo lung function (ppFEV1) from 77.19 in the 12 months pre TEZ/IVA to 80.79 in the 12 months post TEZ/IVA. The slope of decline in ppFEV1 significantly (p = 0.02) changed in the 24 months post TEZ/IVA, becoming positive. Furthermore, there was a significant improvement in clinical parameters and a fall in sweat chloride from 68 to 28 mmol/L. The mechanism of dysfunction of S945L-CFTR was elucidated by in silico molecular dynamics (MD) simulations. S945L-CFTR caused misfolding of transmembrane helix 8 and disruption of the R domain, a CFTR domain critical to channel gating. This study showed in vitro and in silico that S945L causes both folding and gating defects in CFTR and demonstrated in vitro and in vivo that TEZ/IVA is an efficacious modulator combination to address these defects. As such, we support the utility of patient-derived cell models and MD simulations in predicting and understanding the effect of modulators on CFTR function on an individualized basis.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Miro A Astore
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Po-Chia Chen
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Renate Griffith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS, Australia
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Zahir FR. The Need for Precision Therapies as Determined by Genetic Signature for Cystic Fibrosis. J Pers Med 2021; 11:jpm11121353. [PMID: 34945826 PMCID: PMC8708496 DOI: 10.3390/jpm11121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Farah R Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
11
|
A new platform for high-throughput therapy testing on iPSC-derived lung progenitor cells from cystic fibrosis patients. Stem Cell Reports 2021; 16:2825-2837. [PMID: 34678210 PMCID: PMC8581165 DOI: 10.1016/j.stemcr.2021.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies. A Canadian resource (CFIT) has CF donor-matched iPSCs and nasal epithelial cells Lung progenitor cells (LPCs) differentiated from iPSCs express CFTR LPCs from people with rare CFTR mutations enable high-throughput therapy testing Matching nasal cultures can validate patient-specific drug responses in LPCs
Collapse
|
12
|
Aalbers BL, Bronsveld I, Hofland RW, Heijerman HGM. Management of Individual Patient Expectations When Starting with Highly Effective CFTR Modulators. J Pers Med 2021; 11:811. [PMID: 34442455 PMCID: PMC8398159 DOI: 10.3390/jpm11080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Highly effective CFTR modulators such as elexacaftor/tezacaftor/ivacaftor (ELE/TEZ/IVA will become available for an increasing number of people with cystic fibrosis (pwCF) in the near future. Before the start of this therapy, many questions may arise concerning the expected effects. We assembled the currently available data from the literature about ELE/TEZ/IVA that focused on commonly asked questions from patients. Overall, the literature so far presents a very hopeful prospect of effects, not only on lung function, but also on nutritional status, sinonasal symptoms and quality of life. The effects in patients with pwCF with severe lung damage are also favorable. Treatment is generally well tolerated. In some cases, patient-derived cell models can help in predicting the effects for individual patients.
Collapse
Affiliation(s)
- Bente L. Aalbers
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.B.); (R.W.H.); (H.G.M.H.)
| | | | | | | |
Collapse
|
13
|
A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J Pers Med 2021; 11:jpm11070643. [PMID: 34357110 PMCID: PMC8307171 DOI: 10.3390/jpm11070643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants. To this end, the biochemical and functional rescue of single corrector-responsive rare mutants were investigated in a bronchial epithelial cell line and patient-derived human primary nasal epithelia (HNE), respectively. The plasma membrane density of P67L-, L206W- or S549R-CFTR corrected by VX-661 or other type I correctors was moderately increased by VX-445. Short-circuit current measurements of HNE, however, uncovered that correction comparable to Trikafta was achieved for S549R-CFTR by VX-661 + VX-770 and for P67L- and L206W-CFTR by the VX-661 + VX-445 combination. Thus, introduction of a third modulator may not provide additional benefit for patients with a subset of rare CFTR missense mutations. These results also underscore that HNE, as a precision medicine model, enable the optimization of mutation-specific modulator combinations to maximize their efficacy and minimize life-long drug exposure of CF patients.
Collapse
|
14
|
Graeber SY, Vitzthum C, Mall MA. Potential of Intestinal Current Measurement for Personalized Treatment of Patients with Cystic Fibrosis. J Pers Med 2021; 11:jpm11050384. [PMID: 34066648 PMCID: PMC8151208 DOI: 10.3390/jpm11050384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Refinement of personalized treatment of cystic fibrosis (CF) with emerging medicines targeting the CF basic defect will likely benefit from biomarkers sensitive to detect improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function in individual patients. Intestinal current measurement (ICM) is a technique that enables quantitative assessment of CFTR chloride channel function in rectal tissues or other intestinal epithelia. ICM was originally developed to study the CF ion transport defect in the intestine and has been established as a sensitive biomarker of CFTR function and diagnostic test for CF. With the emergence of CFTR-directed therapeutics, ICM has become an important tool to estimate the level of rescue of CFTR function achieved by approved CFTR modulators, both at the level of CFTR genotype groups, as well as individual patients with CF. In combination with preclinical patient-derived cell culture models, ICM may aid the development of targeted therapies for patients with rare CFTR mutations. Here, we review the principles of ICM and examine how this CFTR biomarker may be used to support diagnostic testing and enhance personalized medicine for individual patients with common as well as rare CFTR mutations in the new era of medicines targeting the underlying cause of CF.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Constanze Vitzthum
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
| | - Marcus A. Mall
- Charité—Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, 13353 Berlin, Germany; (S.Y.G.); (C.V.)
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Centre for Lung Research (DZL), 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-(30)-450-566-182; Fax: +49-(30)-450-566-931
| |
Collapse
|
15
|
Nasal Epithelial Cell-Based Models for Individualized Study in Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms22094448. [PMID: 33923202 PMCID: PMC8123210 DOI: 10.3390/ijms22094448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.
Collapse
|
16
|
Laselva O, McCormack J, Bartlett C, Ip W, Gunawardena TNA, Ouyang H, Eckford PDW, Gonska T, Moraes TJ, Bear CE. Preclinical Studies of a Rare CF-Causing Mutation in the Second Nucleotide Binding Domain (c.3700A>G) Show Robust Functional Rescue in Primary Nasal Cultures by Novel CFTR Modulators. J Pers Med 2020; 10:jpm10040209. [PMID: 33167369 PMCID: PMC7712331 DOI: 10.3390/jpm10040209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The combination therapies ORKAMBITM and TRIKAFTATM are approved for people who have the F508del mutation on at least one allele. In this study we examine the effects of potentiator and corrector combinations on the rare mutation c.3700A>G. This mutation produces a cryptic splice site that deletes six amino acids in NBD2 (I1234-R1239del). Like F508del it causes protein misprocessing and reduced chloride channel function. We show that a novel cystic fibrosis transmembrane conductance regulator CFTR modulator triple combination (AC1, corrector, AC2-2, co-potentiator and AP2, potentiator), rescued I1234-R1239del-CFTR activity to WT-CFTR level in HEK293 cells. Moreover, we show that although the response to ORKAMBI was modest in nasal epithelial cells from two individuals homozygous for I1234-R1239del-CFTR, a substantial functional rescue was achieved with the novel triple combination. Interestingly, while both the novel CFTR triple combination and TRIKAFTATM treatment showed functional rescue in gene-edited I1234-R1239del-CFTR-expressing HBE cells and in nasal cells from two CF patients heterozygous for I1234-R1239del/W1282X, nasal cells homozygous for I1234-R1239del-CFTR showed no significant response to the TRIKAFTATM combination. These data suggest a potential benefit of CFTR modulators on the functional rescue of I1234-R1239del -CFTR, which arises from the rare CF-causing mutation c.3700A>G, and highlight that patient tissues are crucial to our full understanding of functional rescue in rare CFTR mutations.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
- Department of Physiology, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Jacqueline McCormack
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Claire Bartlett
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Wan Ip
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Tarini N. A. Gunawardena
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Hong Ouyang
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
| | - Paul D. W. Eckford
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
| | - Tanja Gonska
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Theo J. Moraes
- Programme in Translational Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (C.B.); (W.I.); (H.O.); (T.G.); (T.J.M.)
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 8X4, Canada
| | - Christine E. Bear
- Programme in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 8X4, Canada; (O.L.); (J.M.); (T.N.A.G.); (P.D.W.E.)
- Department of Physiology, University of Toronto, Toronto, ON M5G 8X4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 8X4, Canada
- Correspondence: ; Tel.: +1-416-816-5981
| |
Collapse
|
17
|
Park JK, Shrivastava A, Zhang C, Pollok BA, Finkbeiner WE, Gibb ER, Ly NP, Illek B. Functional Profiling of CFTR-Directed Therapeutics Using Pediatric Patient-Derived Nasal Epithelial Cell Models. Front Pediatr 2020; 8:536. [PMID: 33014932 PMCID: PMC7500161 DOI: 10.3389/fped.2020.00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Functional profiling of CFTR-directed therapeutics offers the potential to provide significant benefits to young people with cystic fibrosis (CF). However, the development of 2D airway epithelial cell models for individual response tests in CF children remains a central task. The objective of this study was to determine the utility of EpiXTM technology for expansion of nasal epithelial cells for use in electrophysiological CFTR function measurements. An initial harvest of as few as 20,000 cells was sufficient to expand up to 50 million cells that were used to generate air-liquid interface (ALI) cultures for ion transport studies with the Ussing assay. CFTR function was assessed by measuring responses to forskolin and the CFTR potentiator VX-770 (ivacaftor) in ALI cultures generated from passage 3 and 4 cells. Short-circuit current (Isc) measurements of blocked CFTR currents (ΔICFTRinh) discriminated CFTR function between healthy control (wild type, WT) and patients with intermediate (F508del/R117H-7T: 56% WT) and severe (F508del/F508del: 12% WT) CF disease. For the mixed genotypes, CFTR activity for F508del/c.850dupA was 12% WT, R334W/406-1G>A was 24% WT, and CFTRdele2,3(21 kb)/CFTRdele2,3(21 kb) was 9% WT. The CFTR correctors VX-809 (lumacaftor) and VX-661 (tezacaftor) significantly increased CFTR currents for F508del/R117H to 73 and 67% WT, respectively. Cultures with the large deletion mutation CFTRdele2,3(21 kb) unexpectedly responded to VX-661 treatment (20% WT). Amiloride-sensitive sodium currents were robust and ranged between 20-80 μA/cm2 depending on the subject. In addition to characterizing the electrophysiological profile of mutant CFTR activity in cultures for five genotypes, our study exemplifies the promising paradigm of bed-to-bench side cooperation and personalized medicine.
Collapse
Affiliation(s)
- Jeffrey KiHyun Park
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | | | | | | | - Walter E Finkbeiner
- Department of Pathology, UCSF and Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Elizabeth R Gibb
- Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| | - Ngoc P Ly
- Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| | - Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States.,Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| |
Collapse
|