1
|
Blake AD, Chao J, SantaMaria AM, Ekaputri S, Green KJ, Brown ST, Rakowski CK, Choi EK, Aring L, Chen PJ, Snead NM, Matje DM, Geng T, Octaviani A, Bailey K, Hollenbach SJ, Fan TM, Seo YA, Burke MD. Minimizing higher-order aggregation maximizes iron mobilization by small molecules. Nat Chem Biol 2024; 20:1282-1293. [PMID: 38664586 DOI: 10.1038/s41589-024-01596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/01/2024] [Indexed: 09/28/2024]
Abstract
The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.
Collapse
Affiliation(s)
- Andrew D Blake
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Anna M SantaMaria
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stella Ekaputri
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kelsie J Green
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Samantha T Brown
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peng-Jui Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Tao Geng
- Ambys Medicines, South San Francisco, CA, USA
| | | | - Keith Bailey
- Alnylam Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young-Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Martin D Burke
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Molecule Maker Lab Institute, Arnold and Mabel Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, Champaign, IL, USA.
| |
Collapse
|
2
|
Feo E, Gale PA. Therapeutic synthetic anion transporters. Curr Opin Chem Biol 2024; 83:102535. [PMID: 39341172 DOI: 10.1016/j.cbpa.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
This short review highlights recent examples of small-molecule anion transporters reported in the literature that have potentially useful biological activity. This includes anionophores with antibiotic or antifungal activity, anticancer activity, or the potential to treat channelopathies such as cystic fibrosis. Additionally selective and targeted anion transporters are also discussed.
Collapse
Affiliation(s)
- Elba Feo
- School of Physical and Mathematical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Philip A Gale
- School of Physical and Mathematical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
3
|
Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes. Nat Struct Mol Biol 2021; 28:972-981. [PMID: 34887566 PMCID: PMC9336184 DOI: 10.1038/s41594-021-00685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Amphotericin B (AmB) is a powerful but toxic fungicide that operates via enigmatic small molecule-small molecule interactions. This mechanism has challenged the frontiers of structural biology for half a century. We recently showed AmB primarily forms extramembranous aggregates that kill yeast by extracting ergosterol from membranes. Here, we report key structural features of these antifungal 'sponges' illuminated by high-resolution magic-angle spinning solid-state NMR, in concert with simulated annealing and molecular dynamics computations. The minimal unit of assembly is an asymmetric head-to-tail homodimer: one molecule adopts an all-trans C1-C13 motif, the other a C6-C7-gauche conformation. These homodimers are staggered in a clathrate-like lattice with large void volumes similar to the size of sterols. These results illuminate the atomistic interactions that underlie fungicidal assemblies of AmB and suggest this natural product may form biologically active clathrates that host sterol guests.
Collapse
|
4
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
5
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Bergeron C, Cantin AM. New Therapies to Correct the Cystic Fibrosis Basic Defect. Int J Mol Sci 2021; 22:ijms22126193. [PMID: 34201249 PMCID: PMC8227161 DOI: 10.3390/ijms22126193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rare diseases affect 400 million individuals worldwide and cause significant morbidity and mortality. Finding solutions for rare diseases can be very challenging for physicians and researchers. Cystic fibrosis (CF), a genetic, autosomal recessive, multisystemic, life-limiting disease does not escape this sad reality. Despite phenomenal progress in our understanding of this disease, treatment remains difficult. Until recently, therapies for CF individuals were focused on symptom management. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and its product, a protein present at the apical surface of epithelial cells regulating ion transport, allowed the scientific community to learn about the basic defect in CF and to study potential therapies targeting the dysfunctional protein. In the past few years, promising therapies with the goal to restore CFTR function became available and changed the lives of several CF patients. These medications, called CFTR modulators, aim to correct, potentialize, stabilize or amplify CFTR function. Furthermore, research is ongoing to develop other targeted therapies that could be more efficient and benefit a larger proportion of the CF community. The purpose of this review is to summarize our current knowledge of CF genetics and therapies restoring CFTR function, particularly CFTR modulators and gene therapy.
Collapse
Affiliation(s)
- Christelle Bergeron
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - André M. Cantin
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Respiratory Division, Faculty of Medicine, University of Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14893); Fax: +1-819-564-5377
| |
Collapse
|
7
|
Guo X, Zhang J, Li X, Xiao E, Lange JD, Rienstra CM, Burke MD, Mitchell DA. Sterol Sponge Mechanism Is Conserved for Glycosylated Polyene Macrolides. ACS CENTRAL SCIENCE 2021; 7:781-791. [PMID: 34079896 PMCID: PMC8161476 DOI: 10.1021/acscentsci.1c00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 05/07/2023]
Abstract
Amphotericin-like glycosylated polyene macrolides (GPMs) are a clinically and industrially important family of natural products, but the mechanisms by which they exert their extraordinary biological activities have remained unclear for more than half a century. Amphotericin B exerts fungicidal action primarily via self-assembly into an extramembranous sponge that rapidly extracts ergosterol from fungal membranes, but it has remained unclear whether this mechanism is applicable to other GPMs. Using a highly conserved polyene-hemiketal region of GPMs that we hypothesized to represent a conserved ergosterol-binding domain, we bioinformatically mapped the entirety of the GPM sequence-function space and expanded the number of GPM biosynthetic gene clusters (BGCs) by 10-fold. We further leveraged bioinformatic predictions and tetrazine-based reactivity screening targeting the electron-rich polyene region of GPMs to discover a first-in-class methyltetraene- and diepoxide-containing GPM, kineosporicin, and to assign BGCs to many new producers of previously reported members. Leveraging a range of structurally diverse known and newly discovered GPMs, we found that the sterol sponge mechanism of fungicidal action is conserved.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiabao Zhang
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Xinyi Li
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emily Xiao
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin D. Lange
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department
of Biochemistry and National Magnetic Resonance Facility at Madison, DeLuca Biochemistry Laboratories, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin D. Burke
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Microbiology, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|