1
|
Ni RJ, Wang J, Shu YM, Xu L, Zhou JN. Mapping of c-Fos expression in male tree shrew forebrain. Neurosci Lett 2019; 714:134603. [PMID: 31693931 DOI: 10.1016/j.neulet.2019.134603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/05/2023]
Abstract
The tree shrew is susceptible to stimuli. However, mapping of c-Fos expression in male tree shrew forebrain has not been explored. The present results provided the first detailed mapping of c-Fos expression in the forebrain of the tree shrew (Tupaia belangeri chinensis). Acute restraint stress rapidly increased the density of c-Fos-immunoreactive (-ir) neurons in the medial orbital cortex (MO), infralimbic cortex, intermediate part of the lateral septal nucleus (LSi), ventral part of the lateral septal nucleus (LSv), anterior part of the bed nucleus of the stria terminalis, posterior part of the bed nucleus of the stria terminalis (STP), paraventricular nucleus of the hypothalamus, supraoptic nucleus, lateral hypothalamic area, ventromedial hypothalamic nucleus (VMH), and medial amygdaloid nucleus (MeA). Furthermore, a significant increase in c-Fos expression was observed in the MO, LSi, LSv, STP, VMH, arcuate hypothalamic nucleus, anterior amygdaloid area, MeA, and cortical amygdaloid nucleus immediately after acute footshock stress. In addition, the distinct patterns of c-Fos expression in the forebrain were shown in context-, restraint-, or footshock-treated tree shrews. In general, the present study provides the first detailed maps of c-Fos expression in male tree shrew forebrain immediately after various stimuli.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China; Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Mian Shu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610041, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Lu JS, Yue F, Liu X, Chen T, Zhuo M. Characterization of the anterior cingulate cortex in adult tree shrew. Mol Pain 2018; 12:1744806916684515. [PMID: 28256938 PMCID: PMC5521339 DOI: 10.1177/1744806916684515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The anterior cingulate cortex (ACC) is a key brain region for the perception of pain and emotion. Cellular and molecular mechanisms of the ACC are usually investigated in rodents such as mice and rats. Studies of synaptic mechanisms in primates are limited. To facilitate the translation of basic results from rodents to humans, it is critical to use a primate-like animal model for the investigation of the ACC. The tree shrew presents a great opportunity for this as they have similar genome sequences to primates and are considered to have many similarities to primates. In the present study, by combining anatomy, immunostaining and micro-optical sectioning tomography methods, we examined the morphological properties of the ACC in the tree shrew and compared them with the mouse and rat. We found that the ACC in the tree shrew is significantly larger than those found in the mouse and rat. The sizes of cell bodies of ACC pyramidal cells in tree shrew are also larger than that found in the mouse or rat. Furthermore, there are significantly more apical/basal dendritic branches and apical dendritic spines of ACC pyramidal neurons in tree shrew. These results demonstrate that pyramidal cells of the ACC in tree shrews are more advanced than those found in rodents (mice and rats), indicating that the tree shrew can be used as a useful animal model for studying the cellular mechanism for ACC-related physiological and pathological changes in humans.
Collapse
Affiliation(s)
- Jing-Shan Lu
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fang Yue
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqing Liu
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,2 Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi'an, China
| | - Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,3 Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Takahata T, Kaas JH. c-FOS expression in the visual system of tree shrews after monocular inactivation. J Comp Neurol 2016; 525:151-165. [PMID: 27276555 DOI: 10.1002/cne.24053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/30/2023]
Abstract
Tree shrews possess an unusual segregation of ocular inputs to sublayers rather than columns in the primary visual cortex (V1). In this study, the lateral geniculate nucleus (LGN), superior colliculus (SC), pulvinar, and V1 were examined for changes in c-FOS, an immediate-early gene, expression after 1 or 24 hours of monocular inactivation with tetrodotoxin (TTX) in tree shrews. Monocular inactivation greatly reduced gene expression in LGN layers related to the blocked eye, whereas normally high to moderate levels were maintained in the layers that receive inputs from the intact eye. The SC and caudal pulvinar contralateral to the blocked eye had greatly (SC) or moderately (pulvinar) reduced gene expressions reflective of dependence on the contralateral eye. c-FOS expression in V1 was greatly reduced contralateral to the blocked eye, with most of the expression that remained in upper layer 4a and lower 4b and lower layer 6 regions. In contrast, much of V1 contralateral to the active eye showed normal levels of c-FOS expression, including the inner parts of sublayers 4a and 4b and layers 2, 3, and 6. In some cases, upper layer 4a and lower 4b showed a reduction of gene expression. Layers 5 and sublayer 3c had normally low levels of gene expression. The results reveal the functional dominance of the contralateral eye in activating the SC, pulvinar, and V1, and the results from V1 suggest that the sublaminar organization of layer 4 is more complex than previously realized. J. Comp. Neurol. 525:151-165, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Toru Takahata
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Hangzhou, Zhejiang, China, 310016.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| |
Collapse
|
4
|
Depression-like behaviors in tree shrews and comparison of the effects of treatment with fluoxetine and carbetocin. Pharmacol Biochem Behav 2016; 145:1-8. [DOI: 10.1016/j.pbb.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/20/2023]
|
5
|
Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav 2014; 138:75-86. [PMID: 25447482 DOI: 10.1016/j.physbeh.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Collapse
|
6
|
Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry. J Neurosci Methods 2013; 220:9-17. [PMID: 24012828 DOI: 10.1016/j.jneumeth.2013.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/25/2013] [Accepted: 08/21/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Tree shrews are close relatives of primates, and are increasingly used as models in the research of vision, social stress and neurological/psychiatric diseases. However, neuroimaging techniques, for example magnetic resonance (MR) imaging, are only rarely applied to this species to study the structure and function of the brain. A template MR image set, which is essential for morphometry/volumetric analysis, of tree shrew brain has been lacking in the literature. NEW METHOD High-resolution anatomical MR images and diffusion tensor images of the brain were acquired from male Chinese tree shrews (Tupaia belangeri chinensis), and resampled to an isotropic resolution of 200 μm × 200 μm × 200 μm. Population-based image templates of tree shrew brain, including gray matter/white matter/cerebrospinal fluid probability maps and a fractional anisotropy template, were constructed at this spatial resolution, all in a reference space. Digital masks of representative anatomical structures, including hippocampus, amygdala and cingulum bundle, were created. RESULT With the templates constructed, the volumes of bilateral hippocampus and amygdala were measured using a template-facilitated semi-automated approach to be 59.8 ± 8.3 and 64.3 ± 3.4 mm(3), respectively. COMPARISON WITH EXISTING METHOD(S) For the first time, high-resolution MR image templates of tree shrew brain were reported. The average volume of bilateral hippocampus measured with the template-facilitated semi-automated approach was found to be similar to the result obtained by the much more labor-intensive manual approach. CONCLUSIONS The MR image templates obtained in this study are useful for analyzing neuroimage data of tree shrew brain. The templates are freely available to the scientific community upon request.
Collapse
|
7
|
Huang F, Yu W, He Z. Foamy virus in the tree shrew Tupaia belangeri is highly related to simian foamy virus in Macaca mulatta. AIDS Res Hum Retroviruses 2013; 29:1177-8. [PMID: 23668418 DOI: 10.1089/aid.2013.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Foamy viruses (FVs) are ancient retrovirus that infect most nonhuman primates and several animals, but are rarely reported in tree shrew Tupaia belangeri. In the present study, foamy virus was detected in tree shrew. Phylogenetic analysis indicated that FVtup shared the highest homology with SFVmac (99.3%) in China. The discovery of FVtup indicated that the tree shrew is a new host of foamy virus. FVtup is highly prevalent in Tupaia in China and there is the possibility of cross-species transmission from nonhuman primate to Tupaia.
Collapse
Affiliation(s)
- Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
8
|
Zhang XH, Dai ZX, Zhang GH, Han JB, Zheng YT. Molecular characterization, balancing selection, and genomic organization of the tree shrew (Tupaia belangeri) MHC class I gene. Gene 2013; 522:147-55. [PMID: 23566832 DOI: 10.1016/j.gene.2013.03.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
The major histocompatibility complex (MHC) class I genes play a pivotal role in the adaptive immune response among vertebrates. Accordingly, in numerous mammals the genomic structure and molecular characterization of MHC class I genes have been thoroughly investigated. To date, however, little is known about these genes in tree shrews, despite the increasingly popularity of its usage as an animal model. To address this deficiency, we analyzed the structure and characteristic of the tree shrew MHC class I genes (Tube-MHC I) and performed a comparative gene analysis of the tree shrew and other mammal species. We found that the full-length cDNA sequence of the tree shrew MHC class I is 1074bp in length. The deduced peptide is composed of 357 amino acids containing a leader peptide, an α1 and α2 domain, an α3 domain, a transmembrane domain and a cytoplasmic domain. Among these peptides, the cysteines, CD8(+) interaction and N-glycosylation sites are all well conserved. Furthermore, the genomic sequence of the tree shrew MHC class I gene was identified to be 3180bp in length, containing 8 exons and 7 introns. In 21 MHC class I sequences, we conducted an extensive study of nucleotide substitutions. The results indicated that in the peptide binding region (PBR) the rate of non-synonymous substitutions (dN) to synonymous substitutions (dS) was greater than 1, suggesting balancing selection at the PBR. These findings provide valuable contributions in furthering our understanding of the structure, molecular polymorphism, and function of the MHC class I genes in tree shrews, further improving their utility as an animal model in biomedical research.
Collapse
Affiliation(s)
- Xi-He Zhang
- Key laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | |
Collapse
|
9
|
Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:398-403. [DOI: 10.1016/j.cbpb.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
|
10
|
[Effects of some extenders and monoamines on sperm cryopreservation in tree shrews (Tupaia belangeri)]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:19-28. [PMID: 22345004 DOI: 10.3724/sp.j.1141.2012.01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tree shrew may be an important experimental animal for disease models in humans. The effects of some extenders and momamines on sperm cryopreservation will provide helpful data for experimentation of strains and conservation of genetic resources in tree shrews. Epididymal sperm were surgically harvested from male tree shrews captured around Kunming, China and sperm motility, acrosome integrity and fertility were assessed during cryopreservation. In Experiment 1 eight extenders (TTE, TCG, TCF, TTG, BWW, BTS, DM, and SR) supplemented with 0.4 mol/L DMSO were used to dilute the sperm: only TTE, DM and SR showed no differences in motility and acrosome integrity compared to fresh controls after equilibration. After freezing and thawing, sperm in any extender showed lower motility than fresh control and sperm in DM showed higher motility than other groups. However, BWW produced the lowest motility. For acrosome integrity, TTE and DM showed higher than BWW, BTS and SR after equilibration. The parameter in DM was higher than other groups (except TTE) after thawing. In Experiment 2 four penetrating cryoprotectant agents (CPA) [dimethyl-formamide (DF), formamide (F), dimethylacetamide (DA), and acetamide (A)] at 0.2 mol/L, 0.4 mol/L, 0.8 mol/L, and 1.2 mol/L, respectively were added to the DM extender. Motility showed no difference among CPA groups and non-CPA group (control) after equilibration, but all thawed sperm showed lower values in motility and acrosome integrity than pre-freezing groups. However, sperm in 0.8 mol/L DF and 0.4 mol/L DMSO showed higher values in both parameters than that in other CPA groups (P>0.05). In Experiment 3 the fertilization rate of oocytes inseminated with 0.4mol/L DMSO (50%) were higher than that with 0.8mol/L DF (16%). In conclusion, non-ion extenders supplemented with egg yolk may be better for sperm cryopreservation in tree shrews and cryoprotectant effects of monoamines agents should be further studied in this species.
Collapse
|
11
|
Zhang YX, Ping SH, Yang SH. [Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:29-36. [PMID: 22345005 DOI: 10.3724/sp.j.1141.2012.01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tree shrew (Tupaia belangeri chinensis) is a small non-rodent mammal, which is a relatively new experimental animal in medicine due to its close evolutionary relationship to primates and its rapid propagation. Sperm characteristics and cryopreservation in the tree shrew were the main contents of our spermatological research. Epididymal sperm were surgically harvested from male tree shrews captured from the Kunming area. The rate of testis weight to body weight was (1.05±0.07)%, volume of both testis was (1.12 ± 0.10) mL, total sperm from epididymis and vas deferens were 2.2-8.8×10(7), and sperm motility and acrosome integrity were (68.8 ± 3.9)% and (90.0 ± 2.1)%, respectively. Sperm ultrastructure of the tree shrew was examined by scanning electron microscopy and transmission electron microscopy. Tree shrew sperm had a round or oval shaped head of approximately 6.65×5.82 μm, and midpiece, principal piece, tail, and total sperm lengths were 13.39, 52.35, 65.74, and 73.05 μm, respectively. The mitochondria in the midpiece consisted of approximately 48 gyres and had a 9+9+2 axonemal pattern. After freezing and thawing, sperm showed partly intact acrosomes and plasma membrane defects, and sperm breakages, twists, and swellings were found. The tree shrew had similar ultrastructure with other mammalians except for the mitochondria number and the sperm size. Ultrastructural alteration is still the main cause resulting in poor sperm after cryopreservation.
Collapse
Affiliation(s)
- Yuan-Xu Zhang
- Kunming University of Science and Technology, Kunming, China
| | | | | |
Collapse
|
12
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
13
|
Cryopreservation of epididymal sperm in tree shrews (Tupaia belangeri). Theriogenology 2011; 76:39-46. [DOI: 10.1016/j.theriogenology.2011.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/14/2010] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
|