1
|
Monteiro C, Cardoso-Cruz H, Matos M, Dourado M, Lima D, Galhardo V. Increased fronto-hippocampal connectivity in the Prrxl1 knockout mouse model of congenital hypoalgesia. Pain 2017; 157:2045-2056. [PMID: 27168359 DOI: 10.1097/j.pain.0000000000000611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the large number of studies addressing how prolonged painful stimulation affects brain functioning, there are only a handful of studies aimed at uncovering if persistent conditions of reduced pain perception would also result in brain plasticity. Permanent hypoalgesia induced by neonatal injection of capsaicin or carrageenan has already been shown to affect learning and memory and to induce alterations in brain gene expression. In this study, we used the Prrxl1 model of congenital mild hypoalgesia to conduct a detailed study of the neurophysiological and behavioral consequences of reduced pain experience. Prrxl1 knockout animals are characterized by selective depletion of small diameter primary afferents and abnormal development of the superficial dorsal laminae of the spinal cord, resulting in diminished pain perception but normal tactile and motor behaviour. Behavioral testing of Prrxl1 mice revealed that these animals have reduced anxiety levels, enhanced memory performance, and improved fear extinction. Neurophysiological recordings from awake behaving Prrxl1 mice show enhanced altered fronto-hippocampal connectivity in the theta- and gamma-bands. Importantly, although inflammatory pain by Complete Freund Adjuvant injection caused a decrease in fronto-hippocampal connectivity in the wild-type animals, Prrxl1 mice maintained the baseline levels. The onset of inflammatory pain also reverted the differences in forebrain expression of stress- and monoamine-related genes in Prrxl1 mice. Altogether our results suggest that congenital hypoalgesia may have an effect on brain plasticity that is the inverse of what is usually observed in animal models of chronic pain.
Collapse
Affiliation(s)
- Clara Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Cardoso-Cruz
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Mariana Matos
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Margarida Dourado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Vasco Galhardo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Schwaller F, Fitzgerald M. The consequences of pain in early life: injury-induced plasticity in developing pain pathways. Eur J Neurosci 2014; 39:344-52. [PMID: 24494675 PMCID: PMC4264936 DOI: 10.1111/ejn.12414] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022]
Abstract
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children.
Collapse
Affiliation(s)
- Fred Schwaller
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | | |
Collapse
|
4
|
Quiróz U, Morales-Ledesma L, Morán C, Trujillo A, Domínguez R. Lack of sensorial innervation in the newborn female rats affects the activity of hypothalamic monoaminergic system and steroid hormone secretion during puberty. Endocrine 2014; 46:309-17. [PMID: 24122121 DOI: 10.1007/s12020-013-0055-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
There is evidence that sensory innervation plays a role regulating ovarian functions, including fertility.Since sensory denervation by means of capsaicin in newborn female rats results in a lower response togonadotropins, the present study analyzed the effects that sensory denervation by means of capsaicin in neonatal rats has on the concentration of monoamines in the anterior(AH) and medium (MH) hypothalamus, and on steroid hormone levels in serum. Groups of newborn female rats were injected subcutaneously with capsaicin and killed at 10, 20, and 30 days of age and on the first vaginal estrous.The concentrations of noradrenaline, dopamine, serotonin(5-HT), and their metabolites in the AH and MH were measured using HPLC, and the levels of estradiol (E),progesterone (P), testosterone (T), FSH, and luteinizing hormone using radioimmunoanalysis. The results show thatat 20 days of age, capsaicin-treated rats have lowernoradrenergic and serotonergic activities in the AH, and that the dopaminergic activity was lower in the MH. These results suggest that the sensorial system connections within the monoaminergic systems of the AH and MH are different.Capsaicin-treated animals had lower T, E, and P levels than in the control group, suggesting that the lower activity in the AH monoaminergic system and lower hormonesecretion could be explained by the blockade of information mediated by the sensory innervation (probably substance P), mainly between the ovary and the AH.
Collapse
|
5
|
Amiresmaili S, Shamsizadeh A, Allahtavakoli M, Pourshanazari AA, Roohbakhsh A. The effect of intra-ventral hippocampus administration of TRPV1 agonist and antagonist on spatial learning and memory in male rats. Pharmacol Rep 2014; 66:10-4. [DOI: 10.1016/j.pharep.2013.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/28/2013] [Accepted: 06/13/2013] [Indexed: 11/16/2022]
|
6
|
Rohm B, Holik AK, Somoza MM, Pignitter M, Zaunschirm M, Ley JP, Krammer GE, Somoza V. Nonivamide, a capsaicin analog, increases dopamine and serotonin release in SH-SY5Y cells via a TRPV1-independent pathway. Mol Nutr Food Res 2013; 57:2008-18. [DOI: 10.1002/mnfr.201200846] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/04/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Ann-Katrin Holik
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | - Mark M. Somoza
- Department of Inorganic Chemistry; University of Vienna; Vienna Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | - Mathias Zaunschirm
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
7
|
Köles L, Garção P, Zádori ZS, Ferreira SG, Pinheiro BS, da Silva-Santos CS, Ledent C, Köfalvi A. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain. Brain Res Bull 2013; 97:126-35. [PMID: 23831917 DOI: 10.1016/j.brainresbull.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 02/01/2023]
Abstract
Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.
Collapse
Key Words
- 3Rs
- 4-AP
- 4-aminopyridine
- 7-, 14-, 29- and 60-day-old
- 7D, 14D, 29D, 60D
- ACEA
- ARC
- ARRIVE
- AUC
- American Radiolabeled Chemicals
- Animal Research: Reporting In Vivo Experiments
- BCA
- BSA
- CB(1) cannabinoid receptor
- CB(1)R
- DMSO
- DPM
- DTT
- Dopamine
- ECF
- EDTA
- EGTA
- FR%
- Federation for Laboratory Animal Science Associations
- Felasa
- GABA
- Glutamate
- HEPES
- KHR
- KO
- Krebs-HEPES-Ringer
- LiGTP
- MAO B
- MgATP
- N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)
- N-arachidonyl dopamine
- NADA
- NO
- PMSF
- PVDF
- RTX
- SDS
- SEM
- Serotonin
- Striatum
- TBS-T
- TRPV(1) vanilloid receptor
- TRPV(1)R and TRPV(4)R
- Tris
- Tris-buffered saline with Tween 20
- WT
- aCSF
- arachidonyl-2′-chloroethylamide
- area-under-the-curve
- artificial cerebrospinal fluid
- bicinchoninic acid
- bovine serum albumin
- cannabinoid receptor type 1
- dimethyl sulfoxide
- disintegration per minute
- dithiothreitol
- enhanced chemi-fluorescence
- ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
- ethylenediaminetetraacetic acid
- fractional release %
- knockout
- lithium guanozine triphosphate
- magnesium adenosine triphosphate
- monoamine oxidase B
- nitric oxide
- phenylmethanesulfonyl fluoride
- polyvinylidene difluoride
- replacement, reduction, refinement
- resiniferatoxin
- sEPSCs
- sodium dodecyl sulfate
- spontaneous excitatory postsynaptic currents
- standard error of the mean
- transient release potential receptor vanilloid type 4
- tris(hydroxymethyl)aminomethane
- wild-type
- γ-aminobutyric acid
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Manna SSS, Umathe SN. A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine. Eur J Pharmacol 2012; 685:81-90. [PMID: 22542657 DOI: 10.1016/j.ejphar.2012.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur 440033, Maharastra, India.
| | | |
Collapse
|
9
|
Asfaw TS, Hypolite J, Northington GM, Arya LA, Wein AJ, Malykhina AP. Acute colonic inflammation triggers detrusor instability via activation of TRPV1 receptors in a rat model of pelvic organ cross-sensitization. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1392-400. [PMID: 21474425 PMCID: PMC3119151 DOI: 10.1152/ajpregu.00804.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/03/2011] [Indexed: 12/30/2022]
Abstract
Chronic pelvic pain of unknown etiology is a common clinical condition and may develop as a result of cross-sensitization in the pelvis when pathological changes in one of the pelvic organs result in functional alterations in an adjacent structure. The aim of the current study was to compare transient receptor potential vanilloid 1 (TRPV1) activated pathways on detrusor contractility in vivo and in vitro using a rat model of pelvic organ cross-sensitization. Four groups of male Sprague-Dawley rats (N = 56) were included in the study. Animals received intracolonic saline (control), resiniferatoxin (RTX, TRPV1 agonist, 10(-7) M), 2,4,6-trinitrobenzene sulfonic acid (TNBS, colonic irritant), or double treatment (RTX followed by TNBS). Detrusor muscle contractility was assessed under in vitro and in vivo conditions. Intracolonic RTX increased the contractility of the isolated detrusor in response to electric field stimulation (EFS) by twofold (P ≤ 0.001) and enhanced the contractile response of the bladder smooth muscle to carbachol (CCh). Acute colonic inflammation reduced detrusor contractility upon application of CCh in vitro, decreased bladder capacity by 28.1% (P ≤ 0.001), and reduced micturition volume by 60% (P ≤ 0.001). These changes were accompanied by an increased number of nonmicturition contractions from 3.7 ± 0.7 to 15 ± 2.7 (N = 6 in both groups, P ≤ 0.001 vs. control). Desensitization of intracolonic TRPV1 receptors before the induction of acute colitis restored the response of isolated detrusor strips to CCh but not to EFS stimulation. Cystometric parameters were significantly improved in animals with double treatment and approximated the control values. Our data suggest that acute colonic inflammation triggers the occurrence of detrusor instability via activation of TRPV1-related pathways. Comparison of the results obtained under in vitro vs. in vivo conditions provides evidence that intact neural pathways are critical for the development of an overactive bladder resulting from pelvic organ cross talk.
Collapse
Affiliation(s)
- Tirsit S Asfaw
- Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics and Gynecology, University of Pennsylvania, Glenolden, Pennsylvania 19036-2307, USA
| | | | | | | | | | | |
Collapse
|