Anaeigoudari A, Soukhtanloo M, Shafei MN, Sadeghnia HR, Reisi P, Beheshti F, Behradnia S, Mousavi SM, Hosseini M. Neuronal nitric oxide synthase has a role in the detrimental effects of lipopolysaccharide on spatial memory and synaptic plasticity in rats.
Pharmacol Rep 2016;
68:243-249. [PMID:
26922523 DOI:
10.1016/j.pharep.2015.09.004]
[Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND
The role of neuronal nitric oxide synthase (nNOS) in lipopolysaccharide (LPS)-induced memory and synaptic plasticity impairment was investigated.
METHODS
The rats were divided and treated as follows: (1) control (saline), (2) LPS, (3) 7NI (7-nitroindazole as a nNOS inhibitor)-LPS and (4) 7NI.
RESULTS
In a Morris water maze, the LPS group took a longer amount of time and traveled a greater distance to reach the platform, this was prevented by 7NI. Malondialdehyde (MDA) and nitric oxide (NO) metabolites in the hippocampus of the LPS group were higher while the total thiol, superoxide dismutase and catalase were lower than that of the controlled specimen. Pre-treatment using 7NI prevented the changes in the biochemical criteria. The slope and amplitude of the field excitatory post-synaptic potential (fEPSP) in the LPS group decreased, whereas in 7NI-LPS group they increased.
CONCLUSION
It is suggested that inhibition of nNOS by 7NI improves the deleterious effects of LPS by reducing NO metabolites and the brain tissues oxidative damage.
Collapse