1
|
Salas-Gallardo GA, Lorea-Hernández JJ, Robles-Gómez ÁA, Del Campo CCM, Peña-Ortega F. Morphological differentiation of peritumoral brain zone microglia. PLoS One 2024; 19:e0297576. [PMID: 38451958 PMCID: PMC10919594 DOI: 10.1371/journal.pone.0297576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The Peritumoral Brain Zone (PBZ) contributes to Glioblastoma (GBM) relapse months after the resection of the original tumor, which is influenced by a variety of pathological factors. Among those, microglia are recognized as one of the main regulators of GBM progression and probably relapse. Although microglial morphology has been analyzed inside GBM and its immediate surroundings, it has not been objectively characterized throughout the PBZ. Thus, we aimed to perform a thorough characterization of microglial morphology in the PBZ and its likely differentiation not just from the tumor-associated microglia but from control tissue microglia. For this purpose, Sprague Dawley rats were intrastriatally implanted with C6 cells to induce a GBM formation. Gadolinium-based magnetic resonance imaging (MRI) was performed to locate the tumor and to define the PBZ (2 mm beyond the tumor border), thus delimitating the different regions of interest (ROIs: core tumoral zone and immediate interface; contralateral striatum as control). Brain slices were obtained and immunolabeled with the microglia marker Iba-1. Sixteen morphological parameters were measured for each cell, significative differences were found in all parameters when comparing the four ROIs. To determine if PBZ microglia could be morphologically differentiated from microglia in other ROIs, hierarchical clustering analysis was performed, revealing that microglia can be separated into four morphologically differentiated clusters, each of them mostly integrated by cells sampled in each ROI. Furthermore, a classifier based on linear discriminant analysis, including only three morphological parameters, categorized microglial cells across the studied ROIs and showed a gradual transition between them. The robustness of this classification was assessed through principal component analysis with the remaining 13 morphological parameters, corroborating the obtained results. Thus, in this study we provided objective and quantitative evidence that PBZ microglia represent a differentiable microglial morphotype that could contribute to the recurrence of GBM in this area.
Collapse
Affiliation(s)
- G. Anahí Salas-Gallardo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Ángel Abdiel Robles-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Castillo-Martin Del Campo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
2
|
Ma WY, Wang SS, Wu QL, Zhou X, Chu SF, Chen NH. The versatile role of TREM2 in regulating of microglia fate in the ischemic stroke. Int Immunopharmacol 2022; 109:108733. [PMID: 35525233 DOI: 10.1016/j.intimp.2022.108733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are the earliest activated and the longest lasting immune cells after stroke, and they participate in almost all the pathological reactions after stroke. However, their regulatory mechanism has not been fully elucidated. Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor that is mainly expressed in microglia of the central nervous system. The receptor plays an important role in regulating microglia energy metabolism and phenotypic transformation. At present, TREM2 has been developed as a potential target for AD, coronary atherosclerosis and other diseases. However, TREM2 does not provide a systematic summary of the functional transformation and intrinsic molecular mechanisms of microglia after stroke. In this paper, we have summarized the functional changes of TREM2 in microglia after stroke in recent years, and found that TREM2 has important effects on energy metabolism, phagocytosis and anti-inflammatory function of microglia after stroke, suggesting that TREM2 is a potential therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
4
|
Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, dos Reis RR, dos Santos ZA, de Lima CM, de Oliveira MA, Said NM, Freitas SF, Sosthenes MCK, Gomes GF, Henrique EP, Pereira PDC, de Siqueira LS, de Melo MAD, Guerreiro Diniz C, Magalhães NGDM, Diniz JAP, Vasconcelos PFDC, Diniz DG, Anthony DC, Sherry DF, Brites D, Picanço Diniz CW. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front Immunol 2021; 12:683026. [PMID: 34220831 PMCID: PMC8250867 DOI: 10.3389/fimmu.2021.683026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Thais Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Nivin Mazen Said
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Sinara Franco Freitas
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick Douglas Côrrea Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Pedro Fernando da Costa Vasconcelos
- Dep. de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Belém, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
5
|
Hippocampal Subregion and Gene Detection in Alzheimer's Disease Based on Genetic Clustering Random Forest. Genes (Basel) 2021; 12:genes12050683. [PMID: 34062866 PMCID: PMC8147351 DOI: 10.3390/genes12050683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
The distinguishable subregions that compose the hippocampus are differently involved in functions associated with Alzheimer's disease (AD). Thus, the identification of hippocampal subregions and genes that classify AD and healthy control (HC) groups with high accuracy is meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method to construct fusion features and a classification method based on the random forest for identifying the important features. Specifically, we construct the fusion features using the gene sequence and subregions correlation to reduce the diversity in same group. Moreover, samples and features are selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are used to amplify the difference in initial decision trees and evolve the trees. The features in resulting decision trees that reach the peak classification are the important "subregion gene pairs". The findings verify that our method outperforms well in classification performance and generalization. Particularly, we identified some significant subregions and genes, such as hippocampus amygdala transition area (HATA), fimbria, parasubiculum and genes included RYR3 and PRKCE. These discoveries provide some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and genes to AD.
Collapse
|
6
|
de Oliveira TCG, Carvalho-Paulo D, de Lima CM, de Oliveira RB, Santos Filho C, Diniz DG, Bento Torres Neto J, Picanço-Diniz CW. Long-term environmental enrichment reduces microglia morphological diversity of the molecular layer of dentate gyrus. Eur J Neurosci 2020; 52:4081-4099. [PMID: 32726468 DOI: 10.1111/ejn.14920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
We investigated long-term environmental influences on morphology of microglia from the outer and middle thirds of molecular layer of the dentate gyrus (MolDG), and on microglia from dorsal and ventral dentate gyrus molecular layer. We also estimated the total number of MolDG microglia using stereology. For this purpose, microglia of the molecular layer of the dentate gyrus of 20-month-old female Swiss albino mice, housed from 21st postnatal day onwards, in the impoverished environment of the standard laboratory cages (SEA), or in a cage with an enriched environment (EEA), were reconstructed microscopically in three dimensions and compared with each other and with microglia of 6-month-old female Swiss albino mice, also housed from weaning onwards in an enriched cage (EEY). All mice had their brains sectioned and processed for immunolabeling for IBA-1, a selective microglia marker. Random and systematic microglia samples were reconstructed in three dimensions and classified morphologically using hierarchical cluster analysis, followed by discriminant function analysis. SEA and EEY showed two morphological phenotypes of microglia in both the outer and middle thirds of MolDG. EEA mice showed such a reduction in the morphological diversity of microglia that essentially a single morphotype was found. EEA mouse microglia showed an intermediate morphological complexity between types I and II SE microglia. We suggest that type I and type II microglia in SE mice may have different physiological roles and that long-term EE may be associated with adaptive responses of microglial phenotypes to somatomotor and cognitive stimuli.
Collapse
Affiliation(s)
- Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Roseane Borner de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brasil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço-Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
7
|
Lv X, He H, Yang Y, Han L, Guo Z, Chen H, Li J, Qiu Y, Xie C. Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis. Brain Imaging Behav 2020; 13:1160-1171. [PMID: 30054872 DOI: 10.1007/s11682-018-9931-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that radiation-induced injury to the hippocampus may play a critical role in neurocognitive dysfunction in patients with nasopharyngeal carcinoma (NPC). However, few studies have assessed RT-induced hippocampal structural alterations in these patients early after radiotherapy (RT). In this study, 58 NPC patients were longitudinally followed up prior to treatment initiation as well as 3 and 6 months after RT, respectively. Twenty comparable normal controls were recruited and followed up in parallel. A novel magnetic resonance imaging (MRI)-based automated method was used to label hippocampal subfields. The linear mixed model was employed to evaluate longitudinal changes in the volumes of the whole hippocampus and seven hippocampal subfields. Time-dependent volume reduction was observed in the bilateral hippocampus, as well as in the bilateral granule cell layer (GCL), bilateral cornu ammonis 1 (CA1), bilateral molecular layer (ML), and bilateral subiculum (SUB) in NPC patients, but not in controls. Moreover, volume deficits in the bilateral hippocampus, bilateral GCL, and right ML showed dose-dependent patterns, and high volume losses in the bilateral hippocampus, bilateral GCL, left SUB, and right ML were associated with a rapid decline in cognitive function. Our findings demonstrated that the hippocampal subfields were selectively injured by irradiation-related early neurotoxic effects, which might account for cognitive impairment in NPC patients at an early stage after RT. Further, structural MRI could serve as a potential noninvasive imaging biomarker for the early detection of radiation effects on the hippocampus in NPC patients after RT.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Haoqiang He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Ganzhou Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Hong Chen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Yingwei Qiu
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Chuanmiao Xie
- Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Fernández-Arjona MDM, Grondona JM, Fernández-Llebrez P, López-Ávalos MD. Microglial Morphometric Parameters Correlate With the Expression Level of IL-1β, and Allow Identifying Different Activated Morphotypes. Front Cell Neurosci 2019; 13:472. [PMID: 31708746 PMCID: PMC6824358 DOI: 10.3389/fncel.2019.00472] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident macrophages in the brain. Traditionally, two forms of microglia have been described: one considered as a resting/surveillant state in which cells have a highly branched morphology, and another considered as an activated state in which they acquire a de-ramified or amoeboid form. However, many studies describe intermediate microglial morphologies which emerge during pathological processes. Since microglial form and function are closely related, it is of interest to correlate microglial morphology with the extent of its activation. To address this issue, we used a rat model of neuroinflammation consisting in a single injection of the enzyme neuraminidase (NA) within the lateral ventricle. Sections from NA-injected animals were co-immunolabeled with the microglial marker IBA1 and the cytokine IL-1β, which highlight features of the cell’s shape and inflammatory activation, respectively. Activated (IL-1β positive) microglial cells were sampled from the dorsal hypothalamus nearby the third ventricle. Images of single microglial cells were processed in two different ways to obtain (1) an accurate measure of the level of expression of IL-1β (indicating the degree of activation), and (2) a set of 15 morphological parameters to quantitatively and objectively describe the cell’s shape. A simple regression analysis revealed a dependence of most of the morphometric parameters on IL-1β expression, demonstrating that the morphology of microglial cells changes progressively with the degree of activation. Moreover, a hierarchical cluster analysis pointed out four different morphotypes of activated microglia, which are characterized not only by morphological parameters values, but also by specific IL-1β expression levels. Thus, these results demonstrate in an objective manner that the activation of microglial cells is a gradual process, and correlates with their morphological change. Even so, it is still possible to categorize activated cells according to their morphometric parameters, each category presenting a different activation degree. The physiological relevance of those activated morphotypes is an issue worth to be assessed in the future.
Collapse
Affiliation(s)
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| |
Collapse
|
9
|
Green Tea Polyphenol (-)-Epigallocatechin Gallate (EGCG) Attenuates Neuroinflammation in Palmitic Acid-Stimulated BV-2 Microglia and High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2019; 20:ijms20205081. [PMID: 31614951 PMCID: PMC6834190 DOI: 10.3390/ijms20205081] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is closely associated with neuroinflammation in the hypothalamus, which is characterized by over-activated microglia and excessive production of pro-inflammatory cytokines. The present study was aimed at elucidating the effects of (−)-epigallocatechin gallate (EGCG) on palmitic acid-stimulated BV-2 microglia and high-fat-diet-induced obese mice. The results indicated the suppressive effect of EGCG on lipid accumulation, pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) release, and microglial activation in both cellular and high-fat-diet rodent models. These results were associated with lower phosphorylated levels of the janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) signaling pathway. In conclusion, EGCG can attenuate high-fat-induced hypothalamic inflammation via inhibiting the JAK2/STAT3 signaling pathways in microglia.
Collapse
|
10
|
Activation of microglia associated with lentiviral transduction: A semiautomated method of assessment. Acta Histochem 2019; 121:368-375. [PMID: 30771905 DOI: 10.1016/j.acthis.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/24/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
Lentiviral transduction is a powerful tool and widely used in neuroscience research to manipulate gene expression of cells. However, the injection of lentiviral vectors in the brain is not totally benign, it potentially induces focal neuroinflammation. Upon inflammation, microglial cells get activated and can induce major changes in tissue environment, which may interfere with experimental results. In the current study, two weeks after the injection of control viral construction in the dentate gyrus (DG) of rats, an activation of microglia was detected. To access the activation status, we used a fast and accurate method of phenotype detection - measurement of fractal dimension (FD). Microglial morphology is a key indicator of neuroinflammation, therefore FD of microglial cells may serve as a reliable index of inflammation status in the brain. Here we present a detailed description of image processing procedure of images of individual microglial cells. The method allows to preserve the complex structure of microglial cells and their thin processes on the output image, which is important for accurate FD assessment.
Collapse
|
11
|
Gomes GF, Peixoto RDDF, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, Fernandes TN, de Abreu CC, Casseb SMM, de Lima CM, de Oliveira MA, Diniz DG, Vasconcelos PFDC, Sosthenes MCK, Diniz CWP. Differential Microglial Morphological Response, TNFα, and Viral Load in Sedentary-like and Active Murine Models After Systemic Non-neurotropic Dengue Virus Infection. J Histochem Cytochem 2019; 67:419-439. [PMID: 30924711 DOI: 10.1369/0022155419835218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
Collapse
Affiliation(s)
- Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Railana Deise da Fonseca Peixoto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Brenda Gonçalves Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Kedma Farias Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Lohrane Rosa Bayma
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Pedro Alves Feitoza Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cintya Castro de Abreu
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
12
|
Do multiple system atrophy and Parkinson's disease show distinct patterns of volumetric alterations across hippocampal subfields? An exploratory study. Eur Radiol 2019; 29:4948-4956. [PMID: 30796577 DOI: 10.1007/s00330-019-06043-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/25/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the volumetric alterations of hippocampal subfields and identify which subfields contribute to mild cognitive impairment (MCI) in multiple system atrophy (MSA) and Parkinson's disease (PD). METHODS Thirty MSA-MCI, 26 PD-MCI, and 30 healthy controls were administered cognitive assessment, along with hippocampal segmentation using FreeSurfer 6.0 after a 3-T MRI scan. Regression analyses were performed between the volumes of hippocampal subfields and cognitive variables. RESULTS Compared with healthy controls, the volume of the hippocampal fissure was enlarged in PD-MCI patients, while left Cornu Ammonis (CA2-CA3), bilateral molecular layer, bilateral hippocampus-amygdala transition area, right subiculum, right CA1, right presubiculum, right parasubiculum, and bilateral whole hippocampus were reduced in the MSA-MCI group. Moreover, volumetric reductions of the bilateral hippocampal tail, bilateral CA1, bilateral presubiculum, bilateral molecular layer, left CA2-CA3, left hippocampus-amygdala transition area, right parasubiculum, and bilateral whole hippocampus were found in MSA-MCI relative to the PD-MCI group. The volumes of the left CA2-CA3 (B = - 11.34, p = 0.006) and left parasubiculum (B = 4.63, p = 0.01) were respectively correlated with language and abstraction functions. The volumes of the left fimbria (B = 6.99, p = 0.002) and left hippocampus-amygdala transition area (B = 2.28, p = 0.009) were correlated with visuospatial/executive function. CONCLUSIONS The MSA-MCI patients showed more widespread impairment of hippocampal subfields compared with the PD-MCI group, involving trisynaptic loop and amygdala-hippocampus interactions. The alteration of CA, hippocampus-amygdala transition area, and fimbria still requires further comparison between the two patient groups. KEY POINTS • The atrophy patterns of hippocampal subfields differed between MSA and PD patients. • MSA has widespread change in trisynaptic loop and amygdala-hippocampus interactions. • The atrophy patterns may help to understand the differences of cognitive impairment in MSA and PD.
Collapse
|
13
|
Fernández-Arjona MDM, Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis. Front Cell Neurosci 2017; 11:235. [PMID: 28848398 PMCID: PMC5550745 DOI: 10.3389/fncel.2017.00235] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main pointsMicroglia undergo a quantifiable morphological change upon neuraminidase induced inflammation. Hierarchical cluster and principal components analysis allow morphological classification of microglia. Brain location of microglia is a relevant factor.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Pablo Granados-Durán
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Facultad de Ciencias, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de MálagaMálaga, Spain
| |
Collapse
|
14
|
Zhu B, Chen C, Dang X, Dong Q, Lin C. Hippocampal subfields' volumes are more relevant to fluid intelligence than verbal working memory. INTELLIGENCE 2017. [DOI: 10.1016/j.intell.2017.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Diniz CG, Magalhães NGM, Sousa AA, Santos Filho C, Diniz DG, Lima CM, Oliveira MA, Paulo DC, Pereira PDC, Sherry DF, Picanço-Diniz CW. Microglia and neurons in the hippocampus of migratory sandpipers. ACTA ACUST UNITED AC 2016; 49:e5005. [PMID: 26577847 PMCID: PMC4678657 DOI: 10.1590/1414-431x20155005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022]
Abstract
The semipalmated sandpiper Calidris pusilla and the spotted
sandpiper Actitis macularia are long- and short-distance migrants,
respectively. C. pusilla breeds in the sub-arctic and mid-arctic
tundra of Canada and Alaska and winters on the north and east coasts of South
America. A. macularia breeds in a broad distribution across most of
North America from the treeline to the southern United States. It winters in the
southern United States, and Central and South America. The autumn migration route of
C. pusilla includes a non-stop flight over the Atlantic Ocean,
whereas autumn route of A. macularia is largely over land. Because
of this difference in their migratory paths and the visuo-spatial recognition tasks
involved, we hypothesized that hippocampal volume and neuronal and glial numbers
would differ between these two species. A. macularia did not differ
from C. pusilla in the total number of hippocampal neurons, but the
species had a larger hippocampal formation and more hippocampal microglia. It remains
to be investigated whether these differences indicate interspecies differences or
neural specializations associated with different strategies of orientation and
navigation.
Collapse
Affiliation(s)
- C G Diniz
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - N G M Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A A Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - C Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - D G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - C M Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - M A Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - D C Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - P D C Pereira
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D F Sherry
- Department of Psychology Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - C W Picanço-Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
16
|
Diniz DG, Silva GO, Naves TB, Fernandes TN, Araújo SC, Diniz JAP, de Farias LHS, Sosthenes MCK, Diniz CG, Anthony DC, da Costa Vasconcelos PF, Picanço Diniz CW. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata. Front Neuroanat 2016; 10:23. [PMID: 27047345 PMCID: PMC4801861 DOI: 10.3389/fnana.2016.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022] Open
Abstract
It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous.
Collapse
Affiliation(s)
- Daniel G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros BarretoBelém, Brasil; Experimental Neuropathology Laboratory, Department of Pharmacology, University of OxfordOxford, UK
| | - Geane O Silva
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | - Thaís B Naves
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | | | - Sanderson C Araújo
- Departamento de Microscopia Eletrônica, Instituto Evandro Chagas Belém, Brasil
| | - José A P Diniz
- Departamento de Microscopia Eletrônica, Instituto Evandro Chagas Belém, Brasil
| | - Luis H S de Farias
- Instituto de Ciências Biológicas, Universidade Federal do Pará Belém, Brasil
| | - Marcia C K Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto Belém, Brasil
| | - Cristovam G Diniz
- Laboratório de Biologia Molecular e Ambiental, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus de Bragança, Bragança Pará, Brasil
| | - Daniel C Anthony
- Experimental Neuropathology Laboratory, Department of Pharmacology, University of Oxford Oxford, UK
| | | | - Cristovam W Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros BarretoBelém, Brasil; Experimental Neuropathology Laboratory, Department of Pharmacology, University of OxfordOxford, UK
| |
Collapse
|
17
|
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138:1138-59. [PMID: 25823474 DOI: 10.1093/brain/awv066] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hanane Touil
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luke M Healy
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David R Owen
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Bryce A Durafourt
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Craig S Moore
- 3 Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|