1
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Ugrumov M. Initial Molecular Mechanisms of the Pathogenesis of Parkinson's Disease in a Mouse Neurotoxic Model of the Earliest Preclinical Stage of This Disease. Int J Mol Sci 2024; 25:1354. [PMID: 38279354 PMCID: PMC10816442 DOI: 10.3390/ijms25021354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (A.K.); (E.P.); (A.B.); (V.B.)
| |
Collapse
|
2
|
Troshev D, Bannikova A, Blokhin V, Pavlova E, Kolacheva A, Ugrumov M. Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson's Disease. Int J Mol Sci 2023; 24:16245. [PMID: 38003434 PMCID: PMC10671746 DOI: 10.3390/ijms242216245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The mammalian striatum is known to contain non-dopaminergic neurons that express dopamine (DA)-synthesizing enzymes and produce DA, responsible for the regulation of motor function. This study assessed the expression of DA-synthesizing enzymes in striatal neurons and their role in DA synthesis in transgenic mice expressing the green fluorescent protein (GFP) gene under the tyrosine hydroxylase (TH) gene promoter in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). We showed that, in Parkinsonian animals, the number of neurons expressing the TH gene increased by 1.9 times compared with the control (0.9% NaCl), which indicates a compensatory response to the DAergic denervation of the striatum. This assumption is supported by a 2.5-fold increase in the expression of genes for TH and transcription factor Nurr1 and a 1.45-fold increase in the expression of the large amino acid transporter 1 gene. It is noteworthy that, in Parkinsonian mice, in contrast to the controls, DA-synthesizing enzymes were found not only in nerve fibers but also in neuronal cell bodies. Indeed, TH or TH and aromatic L-amino acid decarboxylase (AADC) were detected in GFP-positive neurons, and AADC was detected in GFP-negative neurons. These neurons were shown to synthesize DA, and this synthesis is compensatorily increased in Parkinsonian mice. The above data open the prospect of improving the treatment of PD by maintaining DA homeostasis in the striatum.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (D.T.); (A.B.); (V.B.); (E.P.); (A.K.)
| |
Collapse
|
3
|
Troshev D, Bannikova A, Blokhin V, Kolacheva A, Pronina T, Ugrumov M. Striatal Neurons Partially Expressing a Dopaminergic Phenotype: Functional Significance and Regulation. Int J Mol Sci 2022; 23:ijms231911054. [PMID: 36232359 PMCID: PMC9570204 DOI: 10.3390/ijms231911054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of striatal neurons expressing dopamine-synthesizing enzymes, researchers have attempted to identify their phenotype and functional significance. In this study, it was shown that in transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase (TH) gene promoter, (i) there are striatal neurons expressing only TH, only aromatic L-amino acid decarboxylase (AADC), or both enzymes of dopamine synthesis; (ii) striatal neurons expressing dopamine-synthesizing enzymes are not dopaminergic since they lack a dopamine transporter; (iii) monoenzymatic neurons expressing individual complementary dopamine-synthesizing enzymes produce this neurotransmitter in cooperation; (iv) striatal nerve fibers containing only TH, only AADC, or both enzymes project into the lateral ventricles, providing delivery pathways for L-3,4-dihydroxyphenylalanine and dopamine to the cerebrospinal fluid; and (v) striatal GFP neurons express receptor genes for various signaling molecules, i.e., classical neurotransmitters, neuropeptides, and steroids, indicating fine regulation of these neurons. Based on our data, it is assumed that the synthesis of dopamine by striatal neurons is a compensatory response to the death of nigral dopaminergic neurons in Parkinson’s disease, which opens broad prospects for the development of a fundamentally novel antiparkinsonian therapy.
Collapse
|
4
|
A New Method for the Visualization of Living Dopaminergic Neurons and Prospects for Using It to Develop Targeted Drug Delivery to These Cells. Int J Mol Sci 2022; 23:ijms23073678. [PMID: 35409040 PMCID: PMC8998426 DOI: 10.3390/ijms23073678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
This is the first study aiming to develop a method for the long-term visualization of living nigrostriatal dopaminergic neurons using 1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine-BODIPY (GBR-BP), the original fluorescent substance, which is a derivative of GBR-12909, a dopamine uptake inhibitor. This method is based on the authors’ hypothesis about the possibility of specifically internalizing into dopaminergic neurons substances with a high affinity for the dopamine transporter (DAT). Using a culture of mouse embryonic mesencephalic and LUHMES cells (human embryonic mesencephalic cells), as well as slices of the substantia nigra of adult mice, we have obtained evidence that GBR-BP is internalized specifically into dopaminergic neurons in association with DAT via a clathrin-dependent mechanism. Moreover, GBR-BP has been proven to be nontoxic. As we have shown in a primary culture of mouse metencephalon, GBR-BP is also specifically internalized into some noradrenergic and serotonergic neurons, but is not delivered to nonmonoaminergic neurons. Our data hold great promise for visualization of dopaminergic neurons in a mixed cell population to study their functioning, and can also be considered a new approach for the development of targeted drug delivery to dopaminergic neurons in pathology, including Parkinson’s disease.
Collapse
|
5
|
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. BIOLOGY 2021; 10:24. [PMID: 33401480 PMCID: PMC7823682 DOI: 10.3390/biology10010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/26/2023]
Abstract
We studied the effect of human lactoferrin (hLf) on degenerative changes in the nigrostriatal system and associated behavioral deficits in the animal model of Parkinson disease. Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral disturbances were assessed in the open field and rotarod tests and by the stride length analysis. Structural deficits were assessed by the counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and optical density (OD) of TH-immunolabeled fibers in the striatum. Acute MPTP treatment induced long-term behavioral deficit and degenerative changes in the nigrostriatal system. Pretreatment with hLf prevented body weight loss and promoted recovery of motor functions and exploratory behavior. Importantly, OD of TH-positive fibers in the striatum of mice treated with hLf almost returned to normal, and the number of TH-positive cells in the substantia nigra significantly increased on day 28. These results indicate that hLf produces a neuroprotective effect and probably stimulates neuroregeneration under conditions of MPTP toxicity in our model. A relationship between behavioral deficits and nigrostriatal system disturbances at delayed terms after MPTP administration was found.
Collapse
Affiliation(s)
- Marina Yu. Kopaeva
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | - Anton B. Cherepov
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | | | - Irina Yu. Zarayskaya
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| |
Collapse
|
6
|
Klietz M, Keber U, Carlsson T, Chiu WH, Höglinger GU, Weihe E, Schäfer MKH, Depboylu C. l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience 2016; 331:120-33. [DOI: 10.1016/j.neuroscience.2016.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 01/11/2023]
|
7
|
Keber U, Klietz M, Carlsson T, Oertel WH, Weihe E, Schäfer MKH, Höglinger GU, Depboylu C. Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience 2015; 298:302-17. [PMID: 25892702 DOI: 10.1016/j.neuroscience.2015.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/28/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is the therapeutic gold standard in Parkinson's disease. However, long-term treatment is complicated by the induction of debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesias (LIDs). Until today the underlying mechanisms of LID pathogenesis are not fully understood. The aim of this study was to reveal new factors, which may be involved in the induction of LID. We have focused on the expression of striatal tyrosine hydroxylase-positive (TH+) neurons, which are capable of producing either L-DOPA or dopamine (DA) in target areas of ventral midbrain DAergic neurons. To address this issue, a daily L-DOPA dose was administered over the course of 15 days to mice with unilateral 6-hydroxydopamine-induced lesions of the medial forebrain bundle and LIDs were evaluated. Remarkably, the number of striatal TH+ neurons strongly correlated with both induction and severity of LID as well as ΔFosB expression as an established molecular marker for LID. Furthermore, dyskinetic mice showed a marked augmentation of serotonergic fiber innervation in the striatum, enabling the decarboxylation of L-DOPA to DA. Axial, limb and orolingual dyskinesias were predominantly associated with TH+ neurons in the lateral striatum, whereas medially located TH+ neurons triggered locomotive rotations. In contrast, identified accumbal and cortical TH+ cells did not contribute to the generation of LID. Thus, striatal TH+ cells and serotonergic terminals may cooperatively synthesize DA and subsequently contribute to supraphysiological synaptic DA concentrations, an accepted cause in LID pathogenesis.
Collapse
Affiliation(s)
- U Keber
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - M Klietz
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - T Carlsson
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Section of Pharmacology, Institute for Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden(†)
| | - W H Oertel
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - E Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - M K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - G U Höglinger
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany(†); Department of Neurology, Technical University, Munich, Germany
| | - C Depboylu
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|