1
|
Shan Y, Zhao J, Zheng Y, Guo S, Schrodi SJ, He D. Understanding the function of the GABAergic system and its potential role in rheumatoid arthritis. Front Immunol 2023; 14:1114350. [PMID: 36825000 PMCID: PMC9941139 DOI: 10.3389/fimmu.2023.1114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly disabling chronic autoimmune disease. Multiple factors contribute to the complex pathological process of RA, in which an abnormal autoimmune response, high survival of inflammatory cells, and excessive release of inflammatory factors lead to a severe chronic inflammatory response. Clinical management of RA remains limited; therefore, exploring and discovering new mechanisms of action could enhance clinical benefits for patients with RA. Important bidirectional communication occurs between the brain and immune system in inflammatory diseases such as RA, and circulating immune complexes can cause neuroinflammatory responses in the brain. The gamma-aminobutyric acid (GABA)ergic system is a part of the nervous system that primarily comprises GABA, GABA-related receptors, and GABA transporter (GAT) systems. GABA is an inhibitory neurotransmitter that binds to GABA receptors in the presence of GATs to exert a variety of pathophysiological regulatory effects, with its predominant role being neural signaling. Nonetheless, the GABAergic system may also have immunomodulatory effects. GABA/GABA-A receptors may inhibit the progression of inflammation in RA and GATs may promote inflammation. GABA-B receptors may also act as susceptibility genes for RA, regulating the inflammatory response of RA via immune cells. Furthermore, the GABAergic system may modulate the abnormal pain response in RA patients. We also summarized the latest clinical applications of the GABAergic system and provided an outlook on its clinical application in RA. However, direct studies on the GABAergic system and RA are still lacking; therefore, we hope to provide potential therapeutic options and a theoretical basis for RA treatment by summarizing any potential associations.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| |
Collapse
|
2
|
Bryson A, Reid C, Petrou S. Fundamental Neurochemistry Review: GABA A receptor neurotransmission and epilepsy: Principles, disease mechanisms and pharmacotherapy. J Neurochem 2023; 165:6-28. [PMID: 36681890 DOI: 10.1111/jnc.15769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations of excitation-inhibition balance within brain neuronal networks. GABAA receptor neurotransmission is the most prevalent form of inhibitory neurotransmission and is strongly implicated in both the pathophysiology and treatment of epilepsy, serving as a primary target for antiseizure medications for over a century. It is now established that GABA exerts a multifaceted influence through an array of GABAA receptor subtypes that extends far beyond simply negating excitatory activity. As the role of GABAA neurotransmission within inhibitory circuits is elaborated, this will enable the development of precision therapies that correct the network dysfunction underlying epileptic pathology.
Collapse
Affiliation(s)
- Alexander Bryson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
5
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|
6
|
van Lanen RHGJ, Colon AJ, Wiggins CJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Jansen JFA, Backes W, Rijkers K, Schijns OEMG. Ultra-high field magnetic resonance imaging in human epilepsy: A systematic review. Neuroimage Clin 2021; 30:102602. [PMID: 33652376 PMCID: PMC7921009 DOI: 10.1016/j.nicl.2021.102602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE Resective epilepsy surgery is an evidence-based curative treatment option for patients with drug-resistant focal epilepsy. The major preoperative predictor of a good surgical outcome is detection of an epileptogenic lesion by magnetic resonance imaging (MRI). Application of ultra-high field (UHF) MRI, i.e. field strengths ≥ 7 Tesla (T), may increase the sensitivity to detect such a lesion. METHODS A keyword search strategy was submitted to Pubmed, EMBASE, Cochrane Database and clinicaltrials.gov to select studies on UHF MRI in patients with epilepsy. Follow-up study selection and data extraction were performed following PRISMA guidelines. We focused on I) diagnostic gain of UHF- over conventional MRI, II) concordance of MRI-detected lesion, seizure onset zone and surgical decision-making, and III) postoperative histopathological diagnosis and seizure outcome. RESULTS Sixteen observational cohort studies, all using 7T MRI were included. Diagnostic gain of 7T over conventional MRI ranged from 8% to 67%, with a pooled gain of 31%. Novel techniques to visualize pathological processes in epilepsy and lesion detection are discussed. Seizure freedom was achieved in 73% of operated patients; no seizure outcome comparison was made between 7T MRI positive, 7T negative and 3T positive patients. 7T could influence surgical decision-making, with high concordance of lesion and seizure onset zone. Focal cortical dysplasia (54%), hippocampal sclerosis (12%) and gliosis (8.1%) were the most frequently diagnosed histopathological entities. SIGNIFICANCE UHF MRI increases, yet variably, the sensitivity to detect an epileptogenic lesion, showing potential for use in clinical practice. It remains to be established whether this results in improved seizure outcome after surgical treatment. Prospective studies with larger cohorts of epilepsy patients, uniform scan and sequence protocols, and innovative post-processing technology are equally important as further increasing field strengths. Besides technical ameliorations, improved correlation of imaging features with clinical semiology, histopathology and clinical outcome has to be established.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - C J Wiggins
- Scannexus, Ultra High Field MRI Research Center, Maastricht, The Netherlands
| | - M C Hoeberigs
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
7
|
Chen C, Cai Z, Zhuo Y, Xi M, Lin Z, Jiang F, Liu Z, Wan Y, Zheng Y, Li J, Zhou X, Zhu J, Zhong W. Overexpression of SLC6A1 associates with drug resistance and poor prognosis in prostate cancer. BMC Cancer 2020; 20:289. [PMID: 32252682 PMCID: PMC7137497 DOI: 10.1186/s12885-020-06776-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Background Solute Carrier Family 6 Member 1 (SLC6A1) has been identified as a cancer-promoting gene in various human cancers, such as clear cell renal cell carcinoma and ovarian cancer. However, its roles in prostate cancer (PCa) has not been fully elucidated. The aim of this study was to investigate the expression and clinical significance of SLC6A1 in PCa tissues and its effect on drug resistance to docetaxel in PCa. Methods Expression patterns of SLC6A1 protein in PCa tissues were examined by immunohistochemistry based on Tissue microarray. Associations of SLC6A1 protein expression with various clinicopathological features and patients’ prognosis of PCa were also statistically evaluated based on TCGA data. Roles of SLC6A1 deregulation in prostate carcinogenesis and drug resistance was further determined in vitro and in vivo experiments. Results Based on TCGA Dataset, SLC6A1 expression was markedly higher in patients with high Gleason score, advanced clinical stage and positive biochemical recurrence than those with control features (all P < 0.05). Both unvariate and multivariate analyses demonstrated that SLC6A1 expression was significantly associated with biochemical recurrence-free survival in PCa patients. In addition, enforced expression of SLC6A1 effectively promoted cell proliferation, migration and invasion of PCa cells in vitro. Moreover, the inhibition of SLC6A1 suppressed the tumor growth in vivo. Additionally, immunohistochemical notches of PCNA and MMP-9 in the low-expression cluster were pointedly lower compared to those of NC group. Finally, the cell viability revealed that the overexpression of SLC6A1 obviously promoted the PCa cell resistant to docetaxel (DTX), and the transplanted tumor in the overexpression group had no significant reduction compared with the untreated group. Conclusions Our data suggest that SLC6A1 overexpression may be associated with aggressive progression and short biochemical recurrence-free survival of PCa, and may be related to the resistance to docetaxel therapy.
Collapse
Affiliation(s)
- Chaojiang Chen
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.,Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhiduan Cai
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Funeng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Zezhen Liu
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yueping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Li
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xing Zhou
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China.
| | - Weide Zhong
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China. .,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China. .,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
8
|
de Nijs L, Choe K, Steinbusch H, Schijns OEMG, Dings J, van den Hove DLA, Rutten BPF, Hoogland G. DNA methyltransferase isoforms expression in the temporal lobe of epilepsy patients with a history of febrile seizures. Clin Epigenetics 2019; 11:118. [PMID: 31426844 PMCID: PMC6701147 DOI: 10.1186/s13148-019-0721-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) is a common pharmaco-resistant epilepsy referred for adult epilepsy surgery. Though associated with prolonged febrile seizures (FS) in childhood, the neurobiological basis for this relationship is not fully understood and currently no preventive or curative therapies are available. DNA methylation, an epigenetic mechanism catalyzed by DNA methyltransferases (DNMTs), potentially plays a pivotal role in epileptogenesis associated with FS. In an attempt to start exploring this notion, the present cross-sectional pilot study investigated whether global DNA methylation levels (5-mC and 5-hmC markers) and DNMT isoforms (DNMT1, DNMT3a1, and DNMT3a2) expression would be different in hippocampal and neocortical tissues between controls and TLE patients with or without a history of FS. Results We found that global DNA methylation levels and DNMT3a2 isoform expression were lower in the hippocampus for all TLE groups when compared to control patients, with a more significant decrease amongst the TLE groups with a history of FS. Interestingly, we showed that DNMT3a1 expression was severely diminished in the hippocampus of TLE patients with a history of FS in comparison with control and other TLE groups. In the neocortex, we found a higher expression of DNMT1 and DNMT3a1 as well as increased levels of global DNA methylation for all TLE patients compared to controls. Conclusion Together, the findings of this descriptive cross-sectional pilot study demonstrated brain region-specific changes in DNMT1 and DNMT3a isoform expression as well as global DNA methylation levels in human TLE with or without a history of FS. They highlighted a specific implication of DNMT3a isoforms in TLE after FS. Therefore, longitudinal studies that aim at targeting DNMT3a isoforms to evaluate the potential causal relationship between FS and TLE or treatment of FS-induced epileptogenesis seem warranted. Electronic supplementary material The online version of this article (10.1186/s13148-019-0721-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurence de Nijs
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands. .,GIGA-Neurosciences, University of Liège, Liège, Belgium.
| | - Kyonghwan Choe
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Hellen Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jim Dings
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Govert Hoogland
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Maolakuerban N, Azhati B, Tusong H, Abula A, Yasheng A, Xireyazidan A. MiR-200c-3p inhibits cell migration and invasion of clear cell renal cell carcinoma via regulating SLC6A1. Cancer Biol Ther 2018; 19:282-291. [PMID: 29394133 DOI: 10.1080/15384047.2017.1394551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we investigated the mechanism of miR-200c-3p and SLC6A1 in regulating cell activity of clear cell renal cell carcinoma (CCRCC). The mRNA and miRNA expressions of tissue specimens were analyzed by CapitalBio Corporation (Beijing, China). The expression of SLC6A1 in CCRCC cells was examined through qRT-PCR and western blot. The migration and invasion ability of 786-O cells was testified by transwell assay after transfected. 786-O cell proliferation ability was detected by MTT assay. Dual luciferase reporter assay verified the association between SLC6A1 and miR-200c-3p. SLC6A1 was high expressed and miR-200c-3p was low expressed in CCRCC tissues and cells. Besides, lower SLC6A1 expression indicated longer survival time and higher survival rate. MiR-200c-3p could directly target at SLC6A1 and reduce its expression. MiR-200c-3p inhibited the proliferation, migration and invasion in 786-O cells by down-regulating SLC6A1 expression. The results suggested that the miR-200c-3p served as a suppressor for CCRCC via down-regulating SLC6A1.
Collapse
Affiliation(s)
- Naibijiang Maolakuerban
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| | - Baihetiya Azhati
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| | - Hamulati Tusong
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| | - Asimujiang Abula
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| | - Anniwaer Yasheng
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| | - Ayiding Xireyazidan
- a Department of Urology , the First Affiliated Hospital of Xinjiang Medical University , 830054 Urumchi , Xinjiang , China
| |
Collapse
|
10
|
Szyndler J, Maciejak P, Kołosowska K, Chmielewska N, Skórzewska A, Daszczuk P, Płaźnik A. Altered expression of GABA-A receptor subunits in the hippocampus of PTZ-kindled rats. Pharmacol Rep 2018; 70:14-21. [DOI: 10.1016/j.pharep.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
|
11
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
12
|
Rassner MP, Moser A, Follo M, Joseph K, van Velthoven-Wurster V, Feuerstein TJ. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism. J Neurochem 2016; 137:177-89. [DOI: 10.1111/jnc.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Michael P. Rassner
- Section of Clinical Neuropharmacology of the Department of Neurosurgery; University of Freiburg; Freiburg Germany
| | - Andreas Moser
- Neurochemical Research Group; Department of Neurology; University of Lübeck; Lübeck Germany
- Freiburg Institute for Advanced Studies (FRIAS); University of Freiburg; Freiburg Germany
| | - Marie Follo
- Department of Medicine I; Medical Center - University of Freiburg; Freiburg Germany
| | - Kevin Joseph
- Section of Clinical Neuropharmacology of the Department of Neurosurgery; University of Freiburg; Freiburg Germany
- Section of Neuroelectronic Systems of the Department of Neurosurgery; University of Freiburg; Freiburg Germany
| | | | - Thomas J. Feuerstein
- Section of Clinical Neuropharmacology of the Department of Neurosurgery; University of Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS); University of Freiburg; Freiburg Germany
| |
Collapse
|
13
|
Chen Z, Zhou YW, Liang C, Jiang YY, Xie LJ. Effects of <i>γ</i>-aminobutyric acid on the tissue structure, antioxidant activity, cell apoptosis, and cytokine contents of bursa of Fabricius in chicks under heat stress. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-97-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. This study aims to investigate the changes in the tissue structure, cell apoptosis, antioxidant activity, and cytokine contents of the bursa of Fabricius (BF) in chicks under heat stress, and the regulation mechanism of the protective effect of dietary γ-aminobutyric acid (GABA) on BF in chicks. One-day-old male Wenchang chicks were randomly divided into a control group (CK), heat stress group (HS), and GABA + HS group. The index of BF, area of follicle, density of apoptosis, antioxidant activity (SOD, MDA, and GSH-PX), and cytokine contents (IL-1β, IL-6, TNF-α, and HSP70) in the BF tissue of chicks were determined at the end of week 1–6. Results showed that HS group had significantly decreased index of BF and area of follicle, and significantly increased density of apoptosis compared with CK group (P < 0.05), while GABA + HS group had significantly increased index of BF and area of follicle, and significantly decreased density of apoptosis compared with HS group (P < 0.05). There was no significant difference in the total SOD activity in the BF tissue among the three groups, except that GABA + HS group had an increase in total SOD activity in week 6, which was significantly different from that of CK and HS groups (P < 0.05). The GSH-PX activity in the BF tissue was high in all groups in the first 3 weeks, but decreased in week 4–6. The MDA content in the BF tissue of HS and GABA + HS groups was significantly increased compared with that of CK group (P < 0.05). There was no significant difference in the HSP70 content between HS and GABA + HS groups (P > 0.05), both of which were significantly decreased compared with that of CK group (P < 0.05). The contents of IL-1β, IL-6, and TNF-α in the BF tissue increased with age in all three groups in week 1–6. In the later BF development, the content of IL-1β in HS group was significantly decreased compared with that of CK group, whereas the content of IL-6 was significantly increased (P < 0.05), and no significant difference was observed in the content of TNF-α. In contrast, the content of IL-6 in GABA + HS group was significantly decreased compared with that of CK group, and the content of TNF-α was significantly increased (P < 0.05). These results suggested that heat stress caused structural damage to the BF tissue, increased cell apoptosis, and decreased antioxidant activity in the BF of chicks. GABA could alleviate the negative effects of heat stress on the BF tissue and improve the structural and functional development of BF in chicks, by increasing the antioxidant activity, down-regulating IL-6 content, and reducing cell apoptosis in the BF tissue of chicks.
Collapse
|