1
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024:S1742-7061(24)00600-7. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
2
|
A Multi-Stage Bioprocess for the Expansion of Rodent Skin-Derived Schwann Cells in Computer-Controlled Bioreactors. Int J Mol Sci 2023; 24:ijms24065152. [PMID: 36982227 PMCID: PMC10049355 DOI: 10.3390/ijms24065152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Regenerative therapies for the treatment of peripheral nerve and spinal cord injuries can require hundreds of millions of autologous cells. Current treatments involve the harvest of Schwann cells (SCs) from nerves; however, this is an invasive procedure. Therefore, a promising alternative is using skin-derived Schwann cells (Sk-SCs), in which between 3–5 million cells can be harvested from a standard skin biopsy. However, traditional static planar culture is still inefficient at expanding cells to clinically relevant numbers. As a result, bioreactors can be used to develop reproducible bioprocesses for the large-scale expansion of therapeutic cells. Here, we present a proof-of-concept SC manufacturing bioprocess using rat Sk-SCs. With this integrated process, we were able to simulate a feasible bioprocess, taking into consideration the harvest and shipment of cells to a production facility, the generation of the final cell product, and the cryopreservation and shipment of cells back to the clinic and patient. This process started with 3 million cells and inoculated and expanded them to over 200 million cells in 6 days. Following the harvest and post-harvest cryopreservation and thaw, we were able to maintain 150 million viable cells that exhibited a characteristic Schwann cell phenotype throughout each step of the process. This process led to a 50-fold expansion, producing a clinically relevant number of cells in a 500 mL bioreactor in just 1 week, which is a dramatic improvement over current methods of expansion.
Collapse
|
3
|
Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3469-3488. [DOI: 10.1007/s10143-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
|
4
|
Yousefifard M, Sarveazad A, Babahajian A, Rafiei Alavi SN, Neishaboori AM, Vaccaro AR, Hosseini M, Rahimi-Movaghar V. Growth Factor Gene-Modified Cells in Spinal Cord Injury Recovery; a Systematic Review. World Neurosurg 2022; 162:150-162.e1. [PMID: 35276395 DOI: 10.1016/j.wneu.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Numerous pre-clinical studies have been performed in recent years on the effects of growth factor gene-modified cells' administration in spinal cord injury (SCI). However, findings of these studies are contradictory. OBJECTIVE The present study aims to conduct a systematic review and meta-analysis on animal studies evaluating the effects of growth factor gene-modified cells' administration on locomotion recovery following SCI. METHODS A search of the Medline, Embase, Scopus and Web of Science databases was conducted, including all animal studies until the end of 2020. Two researchers screened search results, summarized relevant studies and assessed risk of bias, independently. RESULTS Thirty-three studies were included in the final analysis. Transplantation of growth factor gene-modified cells in the injured spinal cord resulted in a significant improvement in animals' locomotion compared with non-treated animals [standardized mean difference (SMD)=1.86; 95% CI: 1.39-2.33; p<0.0001)] and non-genetically modified cells treated animals (SMD=1.30; 0.80-1.79; p<0.0001). Transplantation efficacy of these cells failed to achieve significance in moderate lesions (p=0.091), when using modified neural stem/progenitor cells (p=0.164), when using synthetic neurotrophins (p=0.086) and when the number of transplanted cells was less than 1.0 × 105 cells per animal (p = 0.119). CONCLUSION The result showed that transplantation of growth factor gene-modified cells significantly improved locomotion in SCI animal models. However, there is a major concern regarding the safety of genetically modified cells' transplantation, in terms of overexpressing growth factors. Further studies are needed before any effort to perform a translational and clinical study.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and digestive research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Alex R Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, USA
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Vafaei-Nezhad S, Pour Hassan M, Noroozian M, Aliaghaei A, Shirazi Tehrani A, Abbaszadeh HA, Khoshsirat S. A Review of Low-Level Laser Therapy for Spinal Cord Injury: Challenges And Safety. J Lasers Med Sci 2020; 11:363-368. [PMID: 33425285 DOI: 10.34172/jlms.2020.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Damage to the spinal cord is a central nervous system disorder that results in direct damage to neural cells (axons, cell bodies) and glia, followed by autonomic, motor and sensory impairments. Inflammatory response after this injury can contribute to secondary tissue damage that leads to further behavioral and functional disorders. Inflammation is a complex process, which occurs after an injury. If this progressive process is not well controlled can lead to additional damage to the spinal cord which is preventing neural improvement and regeneration and, which ultimately will not provide good clinical consequences. Inflammation in the injured spinal cord is a physiological response that causes the death of glial and neuronal cells. The reduction of the initial inflammatory process after damage to the spinal cord is one of the important therapeutic strategies. It has been proposed that low-level laser (LLL) therapy, as a noninvasive manner, can modulate inflammatory processes, which leads to a significant improvement in neurological symptoms after spinal cord injury (SCI). Methods: A comprehensive review was performed on SCI, the etiologies, and treatment methods using the keywords spinal cord injury, low-level laser, and inflammation in valid medical databases such as Google Scholar, PubMed, and Elsevier (76 articles). Among the collected papers, articles that were most relevant to the purposes of the study were selected and studied. Results: LLL therapy was able to reduce inflammation and also attenuate neuronal damage after spinal cord damage. Conclusion: The present study illustrates that LLL therapy has positive effects on improving functional recovery and regulating the inflammatory function in the SCI.
Collapse
Affiliation(s)
- Saeed Vafaei-Nezhad
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Pour Hassan
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Noroozian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shirazi Tehrani
- Faculty of Paramedical Science, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yousefifard M, Nasseri Maleki S, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, Hosseini M, Rahimi-Movaghar V. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine 2020; 32:269-284. [PMID: 31675724 DOI: 10.3171/2019.8.spine19201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There is controversy about the role of scaffolds as an adjunctive therapy to mesenchymal stem cell (MSC) transplantation in spinal cord injury (SCI). Thus, the authors aimed to design a meta-analysis on preclinical evidence to evaluate the effectiveness of combination therapy of scaffold + MSC transplantation in comparison with scaffolds alone and MSCs alone in improving motor dysfunction in SCI. METHODS Electronic databases including Medline, Embase, Scopus, and Web of Science were searched from inception until the end of August 2018. Two independent reviewers screened related experimental studies. Animal studies that evaluated the effectiveness of scaffolds and/or MSCs on motor function recovery following experimental SCI were included. The findings were reported as standardized mean difference (SMD) and 95% confidence interval (CI). RESULTS A total of 34 articles were included in the meta-analysis. Analyses show that combination therapy in comparison with the scaffold group alone (SMD 2.00, 95% CI 1.53-2.46, p < 0.0001), the MSCs alone (SMD 1.58, 95% CI 0.84-2.31, p < 0.0001), and the nontreated group (SMD 3.52, 95% CI 2.84-4.20, p < 0.0001) significantly improved motor function recovery. Co-administration of MSCs + scaffolds only in the acute phase of injury (during the first 3 days after injury) leads to a significant recovery compared to scaffold alone (SMD 2.18, p < 0.0001). In addition, the cotransplantation of scaffolds with bone marrow-derived MSCs (SMD 1.99, p < 0.0001) and umbilical cord-derived MSCs (SMD 1.50, p = 0.001) also improved motor function following SCI. CONCLUSIONS The findings showed that scaffolds + MSCs is more effective than scaffolds and MSCs alone in improving motor function following SCI in animal models, when used in the acute phase of injury.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- 1Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Nasseri Maleki
- 1Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander R Vaccaro
- 2Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jens R Chapman
- 3Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Michael G Fehlings
- 4Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- 5Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- 6Department of Surgery and Spine Program, University of Toronto, Ontario, Canada
| | - Mostafa Hosseini
- 7Department of Epidemiology and Biostatistics, School of Public Health, and
| | - Vafa Rahimi-Movaghar
- 8Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; and
- 9Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Hosseini M, Sarveazad A, Babahajian A, Baikpour M, Vaccaro AR, Chapman JR, Yousefifard M, Rahimi-Movaghar V. Effect of vitamins C and E on recovery of motor function after spinal cord injury: systematic review and meta-analysis of animal studies. Nutr Rev 2019; 78:465-473. [DOI: 10.1093/nutrit/nuz076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Context
Many animal studies have evaluated the role of vitamins in the recovery of motor function after spinal cord injury, but their results have been contradictory and no consensus has been reached.
Objective
This meta-analysis aimed to investigate the effects of vitamin C and vitamin E on recovery of motor function after spinal cord injury in animal models.
Data Sources
Two authors independently collected the records of relevant articles published in MEDLINE, Embase, Scopus, and Web of Science through November 2018.
Study Selection
All studies conducted in animal models to evaluate the therapeutic effects of vitamin C or vitamin E or both on recovery of motor function after spinal cord injury were included. Studies that lacked a control group or a standard treatment, lacked an assessment of motor function, included genetically modified/engineered animals, included animals pretreated with vitamin C or vitamin E, or combined vitamin treatment with other methods, such as cell therapies, were excluded.
Data Extraction
Data from 10 articles met the inclusion criteria for meta-analysis, conducted in accordance with PRISMA guidelines.
Results
Daily supplementation with vitamin C (P < 0.0001) and vitamin E (P < 0.0001) significantly improved the recovery of motor function in animals affected by spinal cord injury. Vitamin C supplementation is effective only when administered intraperitoneally (P < 0.0001). Concurrent supplementation with both vitamins does not show better efficacy than treatment with either one alone.
Conclusion
Administration of vitamin C and vitamin E in animal models of spinal cord injury significantly improves the recovery of motor function.
Collapse
Affiliation(s)
- Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Baikpour
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jens R Chapman
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran, and with the Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hassannejad Z, Yousefifard M, Azizi Y, Zadegan SA, Sajadi K, Sharif-Alhoseini M, Shakouri-Motlagh A, Mokhatab M, Rezvan M, Shokraneh F, Hosseini M, Vaccaro AR, Harrop JS, Rahimi-Movaghar V. Axonal degeneration and demyelination following traumatic spinal cord injury: A systematic review and meta-analysis. J Chem Neuroanat 2019; 97:9-22. [PMID: 30726717 DOI: 10.1016/j.jchemneu.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/22/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The pathophysiology of spinal cord injury (SCI) related processes of axonal degeneration and demyelination are poorly understood. The present systematic review and meta-analysis were performed such to establish quantitative results of animal studies regarding the role of injury severity, SCI models and level of injury on the pathophysiology of axon and myelin sheath degeneration. 39 related articles were included in the analysis. The compiled data showed that the total number of axons, number of myelinated axons, myelin sheath thickness, axonal conduction velocity, and internode length steadily decreased as time elapsed from the injury (Pfor trend<0.0001). The rate of axonal retrograde degeneration was affected by SCI model and severity of the injury. Axonal degeneration was higher in injuries of the thoracic region. The SCI model and the site of the injury also affected axonal retrograde degeneration. The number of myelinated axons in the caudal region of the injury was significantly higher than the lesion site and the rostral region. The findings of the present meta-analysis show that the pathophysiology of axons and myelin sheath differ in various phases of SCI and are affected by multiple factors related to the injury.
Collapse
Affiliation(s)
- Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Abdollah Zadegan
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiavash Sajadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sharif-Alhoseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Shakouri-Motlagh
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - Mona Mokhatab
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Rezvan
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University Philadelphia, USA
| | - James S Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review. Neuroscience 2019; 402:37-50. [PMID: 30685542 DOI: 10.1016/j.neuroscience.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Extensive oligodendrocyte death after acute traumatic spinal cord injuries (TSCI) leads to axon demyelination and subsequently may leave axons vulnerable to degeneration. Despite the present evidence showing spontaneous remyelination after TSCI the cellular origin of new myelin and the time course of the axon ensheathment/remyelination remained controversial issue. In this systematic review the trend of oligodendrocyte death after injury as well as the extent and the cellular origin of oligodendrogliogenesis were comprehensively evaluated. The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched with no temporal or linguistic restrictions. Also, hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies discussing different types of myelinating cells including oligodendrocytes, Schwann cells and oligodendrocyte progenitor cells (OPCs) were evaluated. The extent of oligodendrocyte death, oligodendrocyte differentiation and remyelination were the pathophysiological outcome measures. We found 12,359 studies, 34 of which met the inclusion criteria. The cumulative evidence shows extensive oligodendrocytes cell death during the first week post-injury (pi). OPCs and peripheral invading Schwann cells are the dominant cells contributing in myelin formation. The maximum OPC proliferation was observed at around 2 weeks pi and oligodendrogliogenesis continues at later stages until the number of oligodendrocytes return to normal tissue by one month pi. Taken together, the evidence in animals reveals the potential role for endogenous myelinating cells in the axon ensheathment/remyelination after TSCI and this can be the target of pharmacotherapy to induce oligodendrocyte differentiation and myelin formation post-injury.
Collapse
|
11
|
Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, Harrop JS, Fehlings MG, Hosseini M, Rahimi‐Movaghar V. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem 2019; 149:317-330. [DOI: 10.1111/jnc.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center Faculty of Medicine Iran University of Medical Sciences Tehran Iran
| | - Arash Sarveazad
- Colorectal Research Center Iran University of Medical Sciences Tehran Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Baikpour
- Department of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group Institute of Mental Health University of Nottingham Nottingham UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery Rothman Institute Thomas Jefferson University Philadelphia Pennsylvania USA
| | - James S. Harrop
- Department of Neurosurgery Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Michael G. Fehlings
- Division of Genetics and Development Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Toronto Western Hospital University Health Network Toronto Ontario Canada
- Department of Surgery and Spine Program University of Toronto Toronto Ontario Canada
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Vafa Rahimi‐Movaghar
- Sina Trauma and Surgery Research Center Tehran University of Medical Sciences Tehran Iran
- Brain and Spinal Injuries Research Center (BASIR) Neuroscience Institute Imam Khomeini Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
12
|
Zhang Z, Wang F, Song M. The cell repair research of spinal cord injury: a review of cell transplantation to treat spinal cord injury. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through retrospective analysis of the literature on the cell repair of spinal cord injury worldwide, it is found that the mechanism of cell transplantation repairing spinal cord injury is mainly to replace damaged neurons, protect host neurons, prevent apoptosis, promote axonal regeneration and synapse formation, promote myelination, and secrete trophic factors or growth factors to improve microenvironment. A variety of cells are used to repair spinal cord injury. Stem cells include multipotent stem cells, embryonic stem cells, and induced pluripotent stem cells. The multipotent stem cells are mainly various types of mesenchymal stem cells and neural stem cells. Non-stem cells include olfactory ensheathing cells and Schwann cells. Transplantation of inhibitory interneurons to alleviate neuropathic pain in patients is receiving widespread attention. Different types of cell transplantation have their own advantages and disadvantages, and multiple cell transplantation may be more helpful to the patient’s functional recovery. These cells have certain effects on the recovery of neurological function and the improvement of complications, but further exploration is needed in clinical application. The application of a variety of cell transplantation, gene technology, bioengineering and other technologies has made the prospect of cell transplantation more extensive. There is a need to find a safe and effective comprehensive treatment to maximize and restore the patient’s performance.
Collapse
|
13
|
Zhang S, Wang XJ, Li WS, Xu XL, Hu JB, Kang XQ, Qi J, Ying XY, You J, Du YZ. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Acta Biomater 2018; 77:15-27. [PMID: 30126591 DOI: 10.1016/j.actbio.2018.06.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022]
Abstract
Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. However, how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. Here, a polycaprolactone (PCL)/PSA hybrid nanofiber scaffold encapsulating glucocorticoid methylprednisolone (MP) is developed for SCI treatment. Rat models with spinal cord transection is established and the PCL/PSA/MP scaffold is transplanted into lesion area. PCL/PSA/MP scaffold decreases tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release by inhibiting ionized calcium-binding adapter molecule 1 (Iba1) positive microglia/macrophage activation and reduces apoptosis-associated Caspase-3 protein expression. In addition, the PCL/PSA/MP scaffold inhibits axonal demyelination and glial fibrillary acidic protein (GFAP) expression, increases neurofilament 200 (NF-200) expression and improves functional outcome by Basso, Beattie and Bresnahan (BBB) test. These results demonstrate the therapeutic potential of PSA hybrid nanofiber scaffold in promoting axonal growth and enhancing the functional recovery following SCI. STATEMENT OF SIGNIFICANCE Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. And how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. However, in vivo therapeutic effect of PSA scaffolds towards SCI is still lack of evidence and needs to be further explored. In this study, a novel electrospun polycaprolactone/PSA scaffold loaded with methylprednisolone (MP) was developed to achieve efficient therapeutic effects towards SCI. And we believe that it broadens the application of PSA for SCI treatment.
Collapse
|
14
|
Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19092550. [PMID: 30154346 PMCID: PMC6163303 DOI: 10.3390/ijms19092550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
The transplantation of Schwann cells (SCs) has been shown to provide tissue preservation and support axon growth and remyelination as well as improve functional recovery across a diverse range of experimental spinal cord injury (SCI) paradigms. The autologous use of SCs has progressed to Phase 1 SCI clinical trials in humans where their use has been shown to be both feasible and safe. The contribution of immune modulation to the protective and reparative actions of SCs within the injured spinal cord remains largely unknown. In the current investigation, the ability of SC transplants to alter the innate immune response after contusive SCI in the rat was examined. SCs were intraspinally transplanted into the lesion site at 1 week following a thoracic (T8) contusive SCI. Multicolor flow cytometry and immunohistochemical analysis of specific phenotypic markers of pro- and anti-inflammatory microglia and macrophages as well as cytokines at 1 week after SC transplantation was employed. The introduction of SCs significantly attenuated the numbers of cluster of differentiation molecule 11B (CD11b)+, cluster of differentiation molecule 68 (CD68)+, and ionized calcium-binding adapter molecule 1 (Iba1)+ immune cells within the lesion implant site, particularly those immunoreactive for the pro-inflammatory marker, inducible nitric oxide synthase (iNOS). Whereas numbers of anti-inflammatory CD68+ Arginase-1 (Arg1+) iNOS− cells were not altered by SC transplantation, CD68+ cells of an intermediate, Arg1+ iNOS+ phenotype were increased by the introduction of SCs into the injured spinal cord. The morphology of Iba1+ immune cells was also markedly altered in the SC implant, being elongated and in alignment with SCs and in-growing axons versus their amoeboid form after SCI alone. Examination of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and anti-inflammatory cytokines, interleukin-4 (IL-4) and interleukin-10 (IL-10), by multicolor flow cytometry analysis showed that their production in CD11b+ cells was unaltered by SC transplantation at 1 week post-transplantation. The ability of SCs to subdue the pro-inflammatory iNOS+ microglia and macrophage phenotype after intraspinal transplantation may provide an important contribution to the neuroprotective effects of SCs within the sub-acute SCI setting.
Collapse
|
15
|
Abstract
Traumatic spinal cord injury (SCI) results in impaired neurologic function that for many individuals is permanent and significantly impacts health, function, quality of life, and life expectancy. Many efforts have been taken to develop effective treatments for SCI; nevertheless, proven therapies targeting neurologic regeneration and functional recovery have been limited. Existing therapeutic approaches, including early surgery, strict blood pressure control, and consideration of treatment with steroids, remain debated and largely focus on mitigating secondary injury after the primary trauma has occurred. Today, there is more research being performed in SCI than ever before. Current clinical trials are exploring pharmacologic, cell-based, physiologic, and rehabilitation approaches to reduce secondary injury and also overcome barriers to neurorecovery. In the future, it is likely that tailored treatments combining many of these strategies will offer significant benefits for persons with SCI. This article aims to review key past, current and emerging neurologic and rehabilitation therapeutic approaches for adults with traumatic SCI.
Collapse
Affiliation(s)
- Jayne Donovan
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA.
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA
- The Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
| |
Collapse
|
16
|
Hosseini M, Yousefifard M, Ataei N, Oraii A, Mirzay Razaz J, Izadi A. The efficacy of probiotics in prevention of urinary tract infection in children: A systematic review and meta-analysis. J Pediatr Urol 2017; 13:581-591. [PMID: 29102297 DOI: 10.1016/j.jpurol.2017.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND A consensus has not been reached yet about the efficacy of probiotics in reducing the incidence of urinary tract infections (UTIs) in children. This systematic review and meta-analysis was designed to assess the efficacy of probiotics in prevention UTI in children. METHODS The present study was designed based on guidelines for systematic reviews of clinical trials. Two independent reviewers performed an extensive search in the Medline, Embase, Web of Science and Scopus electronic databases up to the end of 2016. The summery of eligible studies was assessed independently by two reviewers and recorded in the data extraction form. Finally, a pooled relative risk (RR) was reported with a 95% confidence interval (95% CI). RESULTS Data from 10 studies were entered in the present meta-analysis. Probiotic therapy did not have any beneficial effect on the incidence of UTI (RR = 0.94; 95% CI 0.85-1.03; p = 0.19) and its recurrence (RR = 0.93; 95% CI 0.85-1.02; p = 0.14). Subgroup analyses showed that probiotics as monotherapy do not have any beneficial effects on prevention of UTI (RR = 0.96; 95% CI 0.89-1.04; p = 0.31). However, the incidence of UTI is reduced if probiotics are used as adjuvant therapy to antibiotics (RR = 0.92; 95% CI 0.85-0.99; p = 0.02). CONCLUSION The present meta-analysis showed that probiotics did not have a beneficial effect in reducing the incidence or recurrence of UTI. Only a moderate efficacy was seen when a probiotic was used as adjuvant therapy to antibiotics.
Collapse
Affiliation(s)
- Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neamatollah Ataei
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Nephrology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Oraii
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalaledin Mirzay Razaz
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Sahib Behest University of Medical Sciences, Tehran, Iran
| | - Anahita Izadi
- Departments of Pediatric Infectious Diseases, Tehran University of Medical Sciences Tehran, Iran.
| |
Collapse
|
17
|
Janzadeh A, Sarveazad A, Yousefifard M, Dameni S, Samani FS, Mokhtarian K, Nasirinezhad F. Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats. Neuropeptides 2017; 65:90-99. [PMID: 28716393 DOI: 10.1016/j.npep.2017.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 12/23/2022]
Abstract
After spinal cord injury (SCI) there are many recoveries inhibiting factors such as chondroitin sulfate proteoglycan (CSPG) and inflammation. The present study investigated the combinational effect of low level laser therapy (LLLT) as anti-inflammatory agent and Chondroitinase ABC (ChABC) enzyme as CSPG digesting factor on spinal cord after injury. This study performed on 44 male Wistar rats, spinal cord injury induced by a clip compression injury. Animals received two-weeks treatment of 660nm low level laser (LLL) and intraspinal injection of 1μg ChABC. Functional recovery, cavity size, myelination, axonal projections around the cavity, fibroblast invasion and expression of glycogen synthase kinase-3β (GSk 3β), CSPG and aquaporin 4 (AQP4) expression were evaluated. In statistical evaluation p<0.05 considered significant. Result showed the combination of LLLT and ChABC have more effect on reduction of cavity size, improvement of myelination and number of axons around the cavity and decreasing the expression of GSK3β, CSPG and AQP4 expression compared to LLLT and ChABC alone. In the laser and laser+enzyme groups AQP4 expression decreased significantly after SCI. Functional recovery, improved in LLLT and ChABC treated animals, but higher recovery belonged to the combination therapy group. The current study showed combination therapy by LLLT and ChABC is more efficient than a single therapy with each of them.
Collapse
Affiliation(s)
- Atousa Janzadeh
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Dameni
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fazel Sahraneshin Samani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kobra Mokhtarian
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Nakhjavan-Shahraki B, Yousefifard M, Oraii A, Sarveazad A, Hosseini M. Meta-analysis of neuron specific enolase in predicting pediatric brain injury outcomes. EXCLI JOURNAL 2017; 16:995-1008. [PMID: 28900380 PMCID: PMC5579403 DOI: 10.17179/excli2017-405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
A reliable biomarker has not been identified to predict the outcome of traumatic brain injury (TBI) in children. Therefore, the present systematic review and meta-analysis aimed to assess the association between neuron specific enolase (NSE) and traumatic brain injury (TBI) in children. Two independent reviewers searched electronic databases of EMBASE, Cochrane library, Medline and Scopus and then they summarized the results and did a quality control check. At the end, standardized mean difference (SMD) with 95 % confidence interval (CI) and performance of NSE were assessed. 10 studies were included in the present meta-analysis. Average serum (SMD=1.3; 95 % CI: 0.5 to 2.1; p=0.001) and CSF levels (SMD=2.45; 95 % CI: 1.04 to 3.8; p<0.0001) of NSE biomarker were significantly higher in children with TBI with unfavorable outcome compared with other children. Serum NSE had an area under the curve, sensitivity and specificity of 0.75 (95 % CI: 0.72 to 0.79), 0.74 (95 % CI: 0.64 to 0.82) and 0.69 (95 % CI: 0.59 to 0.77), respectively in prediction outcome of TBI. Positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of serum NSE were 2.4 (95 % CI: 1.7 to 3.3), 0.38 (95 % CI: 0.26 to 0.55) and 6.0 (95 % CI: 3.0 to 12.0), respectively. The results show that the performance of NSE is in a moderate level in prediction of unfavorable outcome in children with TBI. However, data in this aspect is not sufficient and more studies are needed.
Collapse
Affiliation(s)
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Oraii
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Nakhjavan-Shahraki B, Yousefifard M, Ataei N, Baikpour M, Ataei F, Bazargani B, Abbasi A, Ghelichkhani P, Javidilarijani F, Hosseini M. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol 2017; 18:120. [PMID: 28372557 PMCID: PMC5379579 DOI: 10.1186/s12882-017-0539-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is still an ongoing discussion on the prognostic value of cystatin C in assessment of kidney function. Accordingly, the present study aimed to conduct a meta-analysis to provide evidence for the prognostic value of this biomarker for acute kidney injury (AKI) in children. METHODS An extensive search was performed in electronic databases of Medline, Embase, ISI Web of Science, Cochrane library and Scopus until the end of 2015. Standardized mean difference (SMD) with a 95% of confidence interval (95% CI) and the prognostic performance characteristics of cystatin C in prediction of AKI were assessed. Analyses were stratified based on the sample in which the level of cystatin C was measured (serum vs. urine). RESULTS A total of 24 articles were included in the meta-analysis [1948 children (1302 non-AKI children and 645 AKI cases)]. Serum (SMD = 0.96; 95% CI: 0.68-1.24; p < 0.0001) and urine (SMD = 0.54; 95% CI:0.34-0.75; p < 0.0001) levels of cystatin C were significantly higher in children with AKI. Overall area under the curve of serum cystatin C and urine cystatin C in prediction of AKI were 0.83 (95% CI: 0.80-0.86) and 0.85 (95% CI: 0.81-0.88), respectively. The best sensitivity (value = 0.85; 95% CI: 0.78-0.90) and specificity (value = 0.61; 95% CI: 0.48-0.73), were observed for the serum concentration of this protein and in the cut-off points between 0.4-1.0 mg/L. CONCLUSION The findings of the present study showed that cystatin C has an acceptable prognostic value for prediction of AKI in children. Since the serum level of cystatin C rises within the first 24 h of admission in patients with AKI, this biomarker can be a suitable alternative for traditional diagnostic measures.
Collapse
Affiliation(s)
- Babak Nakhjavan-Shahraki
- Pediatric Chronic Kidney Disease Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neamatollah Ataei
- Pediatric Chronic Kidney Disease Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Nephrology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Baikpour
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ataei
- Department of Nuclear Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Bazargani
- Pediatric Chronic Kidney Disease Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Nephrology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Abbasi
- Pediatric Chronic Kidney Disease Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Nephrology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ghelichkhani
- Department of Intensive Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Javidilarijani
- Department of Pediatric Nephrology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Nephrology, Atieh Hospital, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran.
| |
Collapse
|