1
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
2
|
Behzadifard M, Aboutaleb N, Dolatshahi M, Khorramizadeh M, Mirshekari Jahangiri H, Kord Z, Nazarinia D. Neuroprotective Effects of Conditioned Medium of Mesenchymal Stem Cells (MSC-CM) as a Therapy for Ischemic Stroke Recovery: A Systematic Review. Neurochem Res 2022; 48:1280-1292. [PMID: 36581731 DOI: 10.1007/s11064-022-03848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
It has been reported that the therapeutic potential of stem cells is mainly mediated by their paracrine factors. In order to identify the effects of conditioned medium of mesenchymal stem cells (MSC-CM) against stroke, a systematic review was conducted. We searched PubMed, Scopus, and ISI Web of Science databases for all available articles relevant to the effects of MSC-CM against the middle cerebral artery occlusion (MCAO) model of ischemic stroke until August 2022. The quality of the included studies was evaluated using The STAIR scale. During the systematic search, a total of 356 published articles were found. A total of 15 datasets were included following screening for eligibility. The type of cerebral ischemia was the MCAO model and CM was obtained from MSCs. The results showed that the therapeutic time window can be considered a crucial factor when researchers use MSC-CM for stroke therapy. In addition, MSC-CM therapy contributes to functional recovery and reduces infarct volume after stroke by targeting different cellular signaling pathways. Our findings showed that MSC-CM therapy has the ability to improve functional recovery and attenuate brain infarct volume after ischemic stroke in preclinical studies. We hope our study accelerates needed progress towards clinical trials.
Collapse
Affiliation(s)
- Mahin Behzadifard
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Maryam Khorramizadeh
- Department of Medical Physics, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Zeynab Kord
- Department of Anaesthesiology, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Donya Nazarinia
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran. .,Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
3
|
Jiao Y, Sun YT, Chen NF, Zhou LN, Guan X, Wang JY, Wei WJ, Han C, Jiang XL, Wang YC, Zou W, Liu J. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats. Neural Regen Res 2022; 17:2518-2525. [PMID: 35535905 PMCID: PMC9120712 DOI: 10.4103/1673-5374.339002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/ischemic brain injury associated with maternal immune activation and the underlying mechanism. We established neonatal rat models of hypoxic/ischemic brain injury by exposing pregnant rats to lipopolysaccharide on day 16 or 17 of pregnancy. Rat offspring were intranasally administered hUC-MSCs on postnatal day 14. We found that polypyrimidine tract-binding protein-1 (PTBP-1) participated in the regulation of lipopolysaccharide-induced maternal immune activation, which led to neonatal hypoxic/ischemic brain injury. Intranasal delivery of hUC-MSCs inhibited PTBP-1 expression, alleviated neonatal brain injury-related inflammation, and regulated the number and function of glial fibrillary acidic protein-positive astrocytes, thereby promoting plastic regeneration of neurons and improving brain function. These findings suggest that hUC-MSCs can effectively promote the repair of neonatal hypoxic/ischemic brain injury related to maternal immune activation through inhibition of PTBP-1 expression and astrocyte activation.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue-Tong Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Nai-Fei Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Li-Na Zhou
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jia-Yi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Xiao-Lei Jiang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cells and Precision Medicine; College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
4
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huang J, U KP, Yang F, Ji Z, Lin J, Weng Z, Tsang LL, Merson TD, Ruan YC, Wan C, Li G, Jiang X. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Am J Cancer Res 2022; 12:143-166. [PMID: 34987639 PMCID: PMC8690936 DOI: 10.7150/thno.57234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Aims: Hypoxic-ischaemic encephalopathy (HIE) is one of the most serious complications in neonates and infants. Mesenchymal stromal cell (MSC)-based therapy is emerging as a promising treatment avenue for HIE. However, despite its enormous potential, the clinical application of MSCs is limited by cell heterogeneity, low isolation efficiency and unpredictable effectiveness. In this study, we examined the therapeutic effects and underlying mechanisms of human pluripotent stem cell-derived ectomesenchymal stromal cells (hPSC-EMSCs) in a rat model of HIE. Methods: hPSC-EMSCs were induced from either human embryonic stem cells or induced pluripotent stem cells. Stem cells or the conditioned medium (CM) derived from stem cells were delivered intracranially or intranasally to neonatal rats with HIE. Human umbilical cord-derived MSCs (hUC-MSCs) were used as the therapeutic comparison control and phosphate-buffered saline (PBS) was used as a negative control. Lesion size, apoptosis, neurogenesis, astrogliosis and microgliosis were evaluated. The rotarod test and Morris water maze were used to determine brain functional recovery. The PC-12 cell line, rat primary cortical neurons and neural progenitor cells were used to evaluate neurite outgrowth and the neuroprotective and neurogenesis effects of hPSC-EMSCs/hUC-MSCs. RNA-seq and enzyme-linked immunosorbent assays were used to determine the secretory factors that were differentially expressed between hPSC-EMSCs and hUC-MSCs. The activation and suppression of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were characterised using western blotting and immunofluorescent staining. Results: hPSC-EMSCs showed a higher neuroprotective potential than hUC-MSCs, as demonstrated by a more significant reduction in lesion size and apoptosis in the rat brain following hypoxia-ischaemia (HI). Compared with PBS treatment, hPSC-EMSCs promoted endogenous neurogenesis and alleviated astrogliosis and microgliosis. hPSC-EMSCs were more effective than hUC-MSCs. hPSC-EMSCs achieved a greater recovery of brain function than hUC-MSCs and PBS in rats with HIE. CM derived from hPSC-EMSCs had neuroprotective and neurorestorative effects in vitro through anti-apoptotic and neurite outgrowth- and neurogenesis-promoting effects. Direct comparisons between hPSC-EMSCs and hUC-MSCs revealed the significant enrichment of a group of secretory factors in hPSC-EMSCs, including nerve growth factor (NGF), platelet-derived growth factor-AA and transforming growth factor-β2, which are involved in neurogenesis, synaptic transmission and neurotransmitter transport, respectively. Mechanistically, the CM derived from hPSC-EMSCs was found to potentiate NGF-induced neurite outgrowth and the neuronal differentiation of NPCs via the ERK/CREB pathway. Suppression of ERK or CREB abolished CM-potentiated neuritogenesis and neuronal differentiation. Finally, intranasal delivery of the CM derived from hPSC-EMSCs significantly reduced brain lesion size, promoted endogenous neurogenesis, mitigated inflammatory responses and improved functional recovery in rats with HIE. Conclusion: hPSC-EMSCs promote functional recovery after HI through multifaceted neuromodulatory activities via paracrine/trophic mechanisms. We propose the use of hPSC-EMSCs for the treatment of HIE, as they offer an excellent unlimited cellular source of MSCs.
Collapse
|
6
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
7
|
Peroxiredoxin 6 secreted by Schwann-like cells protects neuron against ischemic stroke in rats via PTEN/PI3K/AKT pathway. Tissue Cell 2021; 73:101635. [PMID: 34482185 DOI: 10.1016/j.tice.2021.101635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Schwann cells can promote the survival of damaged neurons and axon regeneration by secreting or releasing some proteins and factors which may provide effective strategies to the remedy for ischemic stroke. The models of middle cerebral artery occlusion and oxygen-glucose deprivation (OGD) were established. Peroxiredoxin 6 (PRDX6) was found in Schwann-like cell conditioned medium (SCLC-CM) by mass spectrometry. The rehabilitative performance of SCLC-CM on focal cerebral ischemia of rats and on OGD-induced PC12 cells were assessed. SCLC-CM significantly improved neurological recovery, reducing the infarct volume of rats after stroke. PRDX6 could significantly inhibit neuron apoptosis in the OGD injury by mediating oxidative stress and activating the PTEN/PI3K/AKT pathway. In conclusion, PRDX6 secreted by Schwann-like cell protects neuron against focal cerebral ischemia, SCLC-CM might be a new effective early intervention for ischemic stroke.
Collapse
|
8
|
Kheila M, Gorjipour F, Hosseini Gohari L, Sharifi M, Aboutaleb N. Human mesenchymal stem cells derived from amniotic membrane attenuate isoproterenol (ISO)-induced myocardial injury by targeting apoptosis. Med J Islam Repub Iran 2021; 35:82. [PMID: 34291006 PMCID: PMC8285550 DOI: 10.47176/mjiri.35.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 11/09/2022] Open
Abstract
Background: Currently, stem cell therapy has been proposed as an efficient strategy to prevent or treat myocardial injuries. The current study was conducted to examine cardioprotective effects of human mesenchymal stem cells derived from amniotic membrane (hAMSCs) against isoproterenol (ISO)-induced myocardial injury and explore its potential mechanisms. Methods: The hAMSCs were injected intramyocardially in male Wistar rats 28 days after last injection of ISO (170 mg/kg body weight for 4 consecutive days). The echocardiography was performed to confirm induction of myocardial damage and cardiac function 28 days after last injection of ISO and 4 weeks hAMSCs transplantation after HF induction. The expression of apoptotic markers such as Bcl-2, Bax and P53 was evaluated using Western blotting assay. Masson's trichrome staining was used to determine fibrosis. The cytoarchitecture of myocardial wall and morphology of cells were investigated using hematoxylin and eosin (H&E) staining. Results: As compared to ISO group, hAMSCs transplantation after heart failure (HF) induction significantly blunted the increasing of cardiac dimensions and restored ejection fraction (EF) and fractional shortening (FS) parameters (p<0.05). Moreover, hAMSCs transplantation after HF induction increased the expression of antiapoptotic markers such as Bcl-2 and decreased the expression of pro-apoptotic markers such as P53 and Bax (p<0.05). As compared to ISO group, hAMSCs transplantation after HF induction markedly reduced interstitial myocardial fibrosis and contributed to maintain of normal cytoarchitecture of myocardial wall and morphology of cells. Conclusion: Collectively, the results of current study suggest that transplantation of hAMSCs confers cardioprotection by targeting ISO-induced mitochondria-dependent (intrinsic) pathway of apoptosis.
Collapse
Affiliation(s)
- Maryam Kheila
- Physiology Research Center, Iran University of Medical Sciences. Tehran, Iran
| | - Fazel Gorjipour
- Cellular and Molecular Research Center, Iran University of Medical Sciences. Tehran, Iran
| | - Ladan Hosseini Gohari
- Cellular and Molecular Research Center, Iran University of Medical Sciences. Tehran, Iran
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences. Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
9
|
Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous Administration of Human Amniotic Mesenchymal Stem Cells in the Subacute Phase of Cerebral Infarction in a Mouse Model Ameliorates Neurological Disturbance by Suppressing Blood Brain Barrier Disruption and Apoptosis via Immunomodulation. Cell Transplant 2021; 30:9636897211024183. [PMID: 34144647 PMCID: PMC8216398 DOI: 10.1177/09636897211024183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuro-inflammation plays a key role in the pathophysiology of brain infarction. Cell therapy offers a novel therapeutic option due to its effect on immunomodulatory effects. Amniotic stem cells, in particular, show promise owing to their low immunogenicity, tumorigenicity, and easy availability from amniotic membranes discarded following birth. We have successfully isolated and expanded human amniotic mesenchymal stem cells (hAMSCs). Herein, we evaluated the therapeutic effect of hAMSCs on neurological deficits after brain infarction as well as their immunomodulatory effects in a mouse model in order to understand their mechanisms of action. One day after permanent occlusion of the middle cerebral artery (MCAO), hAMSCs were intravenously administered. RT-qPCR for TNFα, iNOS, MMP2, and MMP9, immunofluorescence staining for iNOS and CD11b/c, and a TUNEL assay were performed 8 days following MCAO. An Evans Blue assay and behavioral tests were performed 2 days and several months following MCAO, respectively. The results suggest that the neurological deficits caused by cerebral infarction are improved in dose-dependent manner by the administration of hAMSCs. The mechanism appears to be through a reduction in disruption of the blood brain barrier and apoptosis in the peri-infarct region through the suppression of pro-inflammatory cytokines and the M2-to-M1 phenotype shift.
Collapse
Affiliation(s)
- Yasunori Yoshida
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kotaro Tatebayashi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Manabu Shirakawa
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Medical Innovation, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, 12818, Nishinomiya, Hyogo, Japan.,Laboratory of Psychology, General Education Center, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| |
Collapse
|
10
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Nazarinia D, Dolatshahi M, Faezi M, Nasseri Maleki S, Aboutaleb N. TLR4 /NF-ĸB and JAK2/STAT3 signaling pathways: Cellular signaling pathways targeted by cell-conditioned medium therapy in protection against ischemic stroke. J Chem Neuroanat 2021; 113:101938. [PMID: 33636320 DOI: 10.1016/j.jchemneu.2021.101938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Human amniotic membrane-derived mesenchymal stem cell-conditioned medium (hAMSC-CM) has been known to improve neuronal survival following ischemic stroke. The present study was designed to examine whether protective effects of hAMSC-CM against stroke can be linked to reducing neuroinflamation by targeting TLR4 /NF-ĸB and Jak2/Stat3 signaling pathways. Immunohistochemistry of hippocampus and western blot assay were performed to evaluate the expression of TLR4 /NF-ĸB and Jak2/Stat3, respectively. Real-time PCR assay was applied to investigate the mRNA levels of Jak2/Stat3. Hematoxylin and eosin (H&E) staining was used to investigate tissue damage and morphological changes in the CA1 region of hippocampus. Increased brain edema was seen in middle cerebral artery occlusion (MCAO) rats compared to sham. Post-treatment with hAMSC-CM markedly reduced brain edema in comparison with MCAO group (P < 0.05). Compared to sham, significantly increased levels of TLR4 /NF-ĸB and Jak2/Stat3 were seen in MCAO rats. Intravenous injection of hAMSC-CM after reperfusion markedly reduced levels of TLR4 /NF-ĸB and Jak2/Stat3 in hippocampus region (P < 0.05). Tissue damage and neuronal cell increased in the CA1 region of hippocampus that reversed by post-treatment by hAMSC-CM. Interestingly, our finding showed that hAMSC-CM can be considered as good candidate to reduce injury following ischemic stroke by decreasing activity of TLR4 /NF-ĸB and Jak2/Stat3 signaling pathways.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Masoumeh Faezi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Nasseri Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
13
|
Li F, Zhang J, Chen A, Liao R, Duan Y, Xu Y, Tao L. Combined transplantation of neural stem cells and bone marrow mesenchymal stem cells promotes neuronal cell survival to alleviate brain damage after cardiac arrest via microRNA-133b incorporated in extracellular vesicles. Aging (Albany NY) 2021; 13:262-278. [PMID: 33436530 PMCID: PMC7835040 DOI: 10.18632/aging.103920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Neural stem cell (NSC) transplantation has prevailed as a promising protective strategy for cardiac arrest (CA)-induced brain damage. Surprisingly, the poor survival of neuronal cells in severe hypoxic condition restricts the utilization of this cell-based therapy. Extracellular vesicles (EVs) transfer microRNAs (miRNAs) between cells are validated as the mode for the release of several therapeutic molecules. The current study reports that the bone marrow mesenchymal stem cells (BMSCs) interact with NSCs via EVs thereby affecting the survival of neuronal cells. Hypoxic injury models of neuronal cells were established using cobalt chloride, followed by co-culture with BMSCs and NSCs alone or in combination. BMSCs combined with NSCs elicited as a superior protocol to stimulate neuronal cell survival. BMSCs-derived EVs could protect neuronal cells against hypoxic injury. Silencing of miR-133b incorporated in BMSCs-derived EVs could decrease the cell viability and the number of NeuN-positive cells and increase the apoptosis in the CA rat model. BMSCs-derived EVs could transfer miR-133b to neuronal cells to activate the AKT-GSK-3β-WNT-3 signaling pathway by targeting JAK1. Our study demonstrates that NSCs promotes the release of miR-133b from BMSCs-derived EVs to promote neuronal cell survival, representing a potential therapeutic strategy for the treatment of CA-induced brain damage.
Collapse
Affiliation(s)
- Fang Li
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Jie Zhang
- The 2nd Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Anbao Chen
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Rui Liao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Yongchun Duan
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Yuwei Xu
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Lili Tao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| |
Collapse
|
14
|
Gao L, Song Z, Mi J, Hou P, Xie C, Shi J, Li Y, Manaenko A. The Effects and Underlying Mechanisms of Cell Therapy on Blood-Brain Barrier Integrity After Ischemic Stroke. Curr Neuropharmacol 2020; 18:1213-1226. [PMID: 32928089 PMCID: PMC7770640 DOI: 10.2174/1570159x18666200914162013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Zhenghong Song
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Jianhua Mi
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Pinpin Hou
- Central Laboratory, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 201112, China
| | - Chong Xie
- Departmeng of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianquan Shi
- Departmeng of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yansheng Li
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Donepezil attenuates injury following ischaemic stroke by stimulation of neurogenesis, angiogenesis, and inhibition of inflammation and apoptosis. Inflammopharmacology 2020; 29:153-166. [PMID: 33201349 DOI: 10.1007/s10787-020-00769-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Donepezil has proven to be an effective drug to reduce neuronal death and subsequently injury in neurodegenerative diseases. The current study evaluated the neuroprotective effects of donepezil in a rat model of ischaemic stroke and explored possible mechanisms which by this drug may reduce cell death. Temporary middle cerebral artery occlusion (tMCAO) was exerted for 45 min to induce ischaemic stroke. The animals were assigned into five groups: sham, control, and three groups treated with different doses of donepezil. Donepezil was intraperitoneally (IP) injected 4 h after reperfusion for 10 consecutive days. Infarct size was determined using TTC staining. The expression of proteins was evaluated using immunohistochemistry assays. Compared with the control group, infarct size was significantly reduced in tMCAO rats treated with different doses of donepezil. Moreover, our results showed significant decreased expression levels of apoptotic markers and pro-inflammatory mediators after treatment with different doses of donepezil for 10 days (P < 0.05). Likewise, significant increase of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) proteins were found in tMCAO rats treated with donepezil compared with the control group (P < 0.05). Collectively, our findings show the validity of donepezil as a new therapeutic agent for attenuation of injury following ischaemic stroke through attenuation of inflammation and improvement of mitochondrial function, neurogenesis, and angiogenesis.
Collapse
|
16
|
Mokhtari B, Aboutaleb N, Nazarinia D, Nikougoftar M, Razavi Tousi SMT, Molazem M, Azadi MR. Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:879-885. [PMID: 32774809 PMCID: PMC7395194 DOI: 10.22038/ijbms.2020.40886.9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Existing studies have demonstrated that intravenous and intramyocardial-administrated mesenchymal stem cells (MSCs) lead to tissue repair after cardiac disorders. We compared the efficiency of both administration methods. MATERIALS AND METHODS A rat model of isoproterenol-induced heart failure (ISO-HF) was established to compare the effects of intravenous and intramyocardial-administrated MSCs on cardiac fibrosis and function. The animals were randomly assigned into six groups: i) control or normal, ii) ISO-HF (HF) iii) ISO-HF rats treated with intramyocardial administration of culture medium (HF+IM/CM), iv) ISO-HF rats treated with intravenous administration of culture medium ( HF+IV/CM), v) ISO-HF rats treated with intravenous administration of MSCs (HF+IV/MSCs), vi) ISO-HF rats treated with intramyocardial administration of MSCs ( HF+IM/MSCs). Cultured MSCs and culture medium were administrated at 4 weeks after final injection of ISO. Heart function, identification of MSCs, osteogenic differentiation, adipogenic differentiation, cardiac fibrosis and tissue damage were evaluated by echocardiography, flow-cytometery, von Kossa, oil red O, Masson's trichrome and H & E staining, respectively. RESULTS Both intravenous and intramyocardial MSCs therapy significantly improved heart function and reduced cardiac fibrosis and tissue damage (P<0.05), whereas the cultured medium had no beneficial effects. CONCLUSION In sum, our results confirm the validity of both administration methods in recovery of HF, but more future research is required.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad Molazem
- Department of Veterinary Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Azadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int 2019; 2019:5432301. [PMID: 31827529 PMCID: PMC6886344 DOI: 10.1155/2019/5432301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in neurosurgery and pharmaceuticals, contemporary treatments are ineffective in restoring lost neurological functions in patients with injuries and disorders of the central nervous system (CNS). Therefore, novel and effective therapies are urgently needed. Recent studies have indicated that stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), could repair/replace damaged or degenerative neurons and improve functional recovery in both preclinical and clinical trials. However, there are many unanswered questions and unsolved issues regarding stem cell therapy in terms of potency, stability, oncogenicity, immune response, cell sources, and ethics. Currently, human amniotic epithelial cells (hAECs) derived from the amnion exhibit considerable advantages over other stem cells and have drawn much attention from researchers. hAECs are readily available, pose no ethical concerns, and have little risk of tumorigenicity and immunogenicity. Mounting evidence has shown that hAECs can promote neural cell survival and regeneration, repair affected neurons, and reestablish damaged neural connections. It is suggested that hAECs may be the most promising candidate for cell-based therapy of neurological diseases. In this review, we mainly focus on recent advances and potential applications of hAECs for treating various CNS injuries and neurodegenerative disorders. We also discuss current hurdles and challenges regarding hAEC therapies.
Collapse
|
18
|
Nasseri Maleki S, Aboutaleb N, Nazarinia D, Allahverdi Beik S, Qolamian A, Nobakht M. Conditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1253-1258. [PMID: 32128088 PMCID: PMC7038431 DOI: 10.22038/ijbms.2019.36617.8722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Heart failure (HF) is one of the leading causes of death worldwide. Due to beneficial effects of stem cells, paracrine secretion of them has recently been used by researchers. The purpose of this study was to investigate the effects of intravenous injection (IV) of conditioned medium (CM) of human amniotic membrane-derived mesenchymal stem cell (MSC-CM) on HF. MATERIALS AND METHODS Male Wistar rats (n=35, 180 g) were randomly divided into five groups: sham, HF, HF+MSC-CM, HF+culture medium and HF+phosphate-buffered saline (PBS). To induce HF, isoproterenol (170 mg/kg/d) was injected subcutaneously for 4 consecutive days. After 28 days, induction of HF was evaluated by echocardiography. A day after echocardiography, 50 μg culture medium/5 ml PBS in HF+culture medium group, 50 μg MSC-CM/5 ml PBS in HF+MSC-CM group and 5 ml PBS in HF+PBS group were injected two times for 4 successive days. The echocardiography was performed 4 weeks after the last injection of isoproterenol. To evaluate the fibrosis, morphology, and cardiac function, Trichrome Masson's staining, Hematoxylin and Eosin staining and echocardiography were performed, respectively. RESULTS CM significantly increased fractional shortening and ejection fraction, and also significantly decreased apoptotic nuclear condensation. Moreover, significant decreased level of fibrosis and increased level of angiogenesis was observed in the treatment group (P<0.05). CONCLUSION Our results indicated that IV injection of CM has therapeutic effects on HF by reducing fibrosis and preventing the progression of failure due to its paracrine effects.
Collapse
Affiliation(s)
- Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Allahverdi Beik
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Qolamian
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Nobakht
- Department of Histology and Neuroscience, Anti-microbial Resistance Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Nazarinia D, Aboutaleb N, Gholamzadeh R, Nasseri Maleki S, Mokhtari B, Nikougoftar M. Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. J Chem Neuroanat 2019; 102:101707. [PMID: 31672459 DOI: 10.1016/j.jchemneu.2019.101707] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) was recently shown to have many antioxidant, antiapoptotic and proangiogenic growth factors. The present study was performed to investigate whether protective effects of hAMSC-CM against focal cerebral ischemia/ reperfusion (I/R) injury is associated with modulation of the mammalian target of rapamycin (mTOR) pathway. A rat model of middle cerebral artery occlusion (MCAO) was created and the animals were divided into three groups including sham, MCAO and MCAO + hAMSC-CM. Drug was administrated immediately after cerebral reperfusion (i.v). The expressions of mTOR, p-mTOR and LC3 were measured using Western blotting and real time-PCR, respectively. Apoptosis and neuronal loss were determined using TUNEL and Nissl staining, respectively. Infarct volume and the blood-brain barrier (BBB) damage were evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans Blue (EB) uptake, respectively. Compared with sham, significant infarct volume, apoptotic cell death, and neuronal loss were found in MCAO rats that reversed by hAMSC-CM (P < 0.05). Likewise, MCAO rats exhibited increased mRNA level of light-chain 3 (LC3) and the LC3II/LC3I ratio as well as decreased expression level of p-mTOR that reversed by hAMSC-CM (P < 0.05). There were no significant differences in the expression of total mTOR among the experimental groups. In summary, our results demonstrate that hAMSC-CM gives rise to neuroprotection following ischemic stroke by restoring mTOR activity and inhibiting autophagy.
Collapse
Affiliation(s)
- Donya Nazarinia
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Raheleh Gholamzadeh
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Mokhtari
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
20
|
Aboutaleb N, Faezi M, Nasseri Maleki S, Nazarinia D, Razavi Tousi SMT, Hashemirad N. Conditioned medium obtained from mesenchymal stem cells attenuates focal cerebral ischemia reperfusion injury through activation of ERK1/ERK2-BDNF signaling pathway. J Chem Neuroanat 2019; 97:87-98. [DOI: 10.1016/j.jchemneu.2019.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
|
21
|
Tang Y, Soroush F, Sun S, Liverani E, Langston JC, Yang Q, Kilpatrick LE, Kiani MF. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. J Neuroinflammation 2018; 15:309. [PMID: 30400800 PMCID: PMC6220469 DOI: 10.1186/s12974-018-1342-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Neuroinflammation often develops in sepsis leading to activation of cerebral endothelium, increased permeability of the blood-brain barrier (BBB), and neutrophil infiltration. We have identified protein kinase C-delta (PKCδ) as a critical regulator of the inflammatory response and demonstrated that pharmacologic inhibition of PKCδ by a peptide inhibitor (PKCδ-i) protected endothelial cells, decreased sepsis-mediated neutrophil influx into the lung, and prevented tissue damage. The objective of this study was to elucidate the regulation and relative contribution of PKCδ in the control of individual steps in neuroinflammation during sepsis. Methods The role of PKCδ in mediating human brain microvascular endothelial (HBMVEC) permeability, junctional protein expression, and leukocyte adhesion and migration was investigated in vitro using our novel BBB on-a-chip (B3C) microfluidic assay and in vivo in a rat model of sepsis induced by cecal ligation and puncture (CLP). HBMVEC were cultured under flow in the vascular channels of B3C. Confocal imaging and staining were used to confirm tight junction and lumen formation. Confluent HBMVEC were pretreated with TNF-α (10 U/ml) for 4 h in the absence or presence of PKCδ-i (5 μM) to quantify neutrophil adhesion and migration in the B3C. Permeability was measured using a 40-kDa fluorescent dextran in vitro and Evans blue dye in vivo. Results During sepsis, PKCδ is activated in the rat brain resulting in membrane translocation, a step that is attenuated by treatment with PKCδ-i. Similarly, TNF-α-mediated activation of PKCδ and its translocation in HBMVEC are attenuated by PKCδ-i in vitro. PKCδ inhibition significantly reduced TNF-α-mediated hyperpermeability and TEER decrease in vitro in activated HBMVEC and rat brain in vivo 24 h after CLP induced sepsis. TNF-α-treated HBMVEC showed interrupted tight junction expression, whereas continuous expression of tight junction protein was observed in non-treated or PKCδ-i-treated cells. PKCδ inhibition also reduced TNF-α-mediated neutrophil adhesion and migration across HBMVEC in B3C. Interestingly, while PKCδ inhibition decreased the number of adherent neutrophils to baseline (no-treatment group), it significantly reduced the number of migrated neutrophils below the baseline, suggesting a critical role of PKCδ in regulating neutrophil transmigration. Conclusions The BBB on-a-chip (B3C) in vitro assay is suitable for the study of BBB function as well as screening of novel therapeutics in real-time. PKCδ activation is a key signaling event that alters the structural and functional integrity of BBB leading to vascular damage and inflammation-induced tissue damage. PKCδ-TAT peptide inhibitor has therapeutic potential for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Fariborz Soroush
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Shuang Sun
- Center for Inflammation, Clinical and Translational Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jordan C Langston
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Qingliang Yang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Laurie E Kilpatrick
- Center for Inflammation, Clinical and Translational Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mohammad F Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA. .,Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:187-206. [PMID: 31175638 DOI: 10.1007/5584_2018_306] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.
Collapse
|