1
|
Dudhabhate BB, Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Deep brain stimulation targeted at lateral hypothalamus-medial forebrain bundle reverses depressive-like symptoms and related cognitive deficits in rat: Role of serotoninergic system. Neuroscience 2024; 556:96-113. [PMID: 39103042 DOI: 10.1016/j.neuroscience.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Collapse
Affiliation(s)
- Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Sanjay N Awathale
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
2
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
3
|
Yunusa S, Hassan Z, Müller CP. Mitragynine inhibits hippocampus neuroplasticity and its molecular mechanism. Pharmacol Rep 2023; 75:1488-1501. [PMID: 37924443 PMCID: PMC10661785 DOI: 10.1007/s43440-023-00541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Mitragynine (MIT), the primary indole alkaloid of kratom (Mitragyna speciosa), has been associated with addictive and cognitive decline potentials. In acute studies, MIT decreases spatial memory and inhibits hippocampal synaptic transmission in long-term potentiation (LTP). This study investigated the impacts of 14-day MIT treatment on hippocampus synaptic transmission and its possible underlying mechanisms. METHODS Under urethane anesthesia, field excitatory post-synaptic potentials (fEPSP) of the hippocampal CA1 region were recorded in the Sprague Dawley (SD) rats that received MIT (1, 5, and 10 mg/kg), morphine (MOR) 5 mg/kg, or vehicle (ip). The effects of the treatments on basal synaptic transmission, paired-pulse facilitation (PPF), and LTP were assessed in the CA1 region. Analysis of the brain's protein expression linked to neuroplasticity was then performed using a western blot. RESULTS The baseline synaptic transmission's amplitude was drastically decreased by MIT at 5 and 10 mg/kg doses, although the PPF ratio before TBS remained unchanged, the PPF ratio after TBS was significantly reduced by MIT (10 mg/kg). Strong and persistent inhibition of LTP was generated in the CA1 region by MIT (5 and 10 mg/kg) doses; this effect was not seen in MIT (1 mg/kg) treated rats. In contrast to MIT (1 mg/kg), MIT (5 and 10 mg/kg) significantly raised the extracellular glutamate levels. After exposure to MIT, GluR-1 receptor expression remained unaltered. However, NMDAε2 receptor expression was markedly downregulated. The expression of pCaMKII, pERK, pCREB, BDNF, synaptophysin, PSD-95, Delta fosB, and CDK-5 was significantly downregulated in response to MIT (5 and 10 mg/kg) exposure, while MOR (5 mg/kg) significantly raised synaptophysin and Delta fosB expression. CONCLUSION Findings from this work reveal that a smaller dose of MIT (1 mg/kg) poses no risk to hippocampal synaptic transmission. Alteration in neuroplasticity-associated proteins may be a molecular mechanism for MIT (5 and 10 mg/kg)-induced LTP disruption and cognitive impairments. Data from this work posit that MIT acted differently from MOR on neuroplasticity and its underlying mechanisms.
Collapse
Affiliation(s)
- Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Pharmacology, Bauchi State University Gadau, PMB 65 Itas/Gadau, Bauchi, Bauchi State, Nigeria
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany.
- Psychiatric and Psychotherapeutic University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Senevirathne DKL, Mahboob A, Zhai K, Paul P, Kammen A, Lee DJ, Yousef MS, Chaari A. Deep Brain Stimulation beyond the Clinic: Navigating the Future of Parkinson's and Alzheimer's Disease Therapy. Cells 2023; 12:1478. [PMID: 37296599 PMCID: PMC10252401 DOI: 10.3390/cells12111478] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical procedure that uses electrical neuromodulation to target specific regions of the brain, showing potential in the treatment of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Despite similarities in disease pathology, DBS is currently only approved for use in PD patients, with limited literature on its effectiveness in AD. While DBS has shown promise in ameliorating brain circuits in PD, further research is needed to determine the optimal parameters for DBS and address any potential side effects. This review emphasizes the need for foundational and clinical research on DBS in different brain regions to treat AD and recommends the development of a classification system for adverse effects. Furthermore, this review suggests the use of either a low-frequency system (LFS) or high-frequency system (HFS) depending on the specific symptoms of the patient for both PD and AD.
Collapse
Affiliation(s)
| | - Anns Mahboob
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Alexandra Kammen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin Jason Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad S. Yousef
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
5
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
6
|
Sun Z, Jia L, Shi D, He Y, Ren Y, Yang J, Ma X. Deep brain stimulation improved depressive-like behaviors and hippocampal synapse deficits by activating the BDNF/mTOR signaling pathway. Behav Brain Res 2022; 419:113709. [PMID: 34890598 DOI: 10.1016/j.bbr.2021.113709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Our previous study demonstrated that acute deep brain stimulation (DBS) in the ventromedial prefrontal cortex (vmPFC) remarkably improved the depressive-like behaviors in a rat model of chronic unpredictable mild stress (CUS rats). However, the mechanisms by which chronic DBS altered depressive-like behaviors and reversed cognitive impairment have not been clarified. Recent work has shown that deficits in brain-derived neurotrophic factor (BDNF) and its downstream proteins, including mammalian target of rapamycin (mTOR), might be involved in the pathogenesis of depression. Therefore, we hypothesized that the antidepressant-like and cognitive improvement effects of DBS were achieved by activating the BDNF/mTOR pathway. CUS rats received vmPFC DBS at 20 Hz for 1 h once a day for 28 days. After four weeks of stimulation, the rats were assessed for the presence of depressive-like behaviors and euthanized to detect BDNF/mTOR signaling using immunoblots. DBS at the vmPFC significantly ameliorated depressive-like behaviors and spatial learning and memory deficits in the CUS rats. Furthermore, DBS restored the reduced synaptic density in the hippocampus induced by CUS and increased the expression or activity of BDNF, Akt, and mTOR in the hippocampus. Thus, the antidepressant-like effects and cognitive improvement produced by vmPFC DBS might be mediated through increased activity of the BDNF/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lina Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Hou G, Lai W, Jiang W, Liu X, Qian L, Zhang Y, Zhou Z. Myelin deficits in patients with recurrent major depressive disorder: An inhomogeneous magnetization transfer study. Neurosci Lett 2021; 750:135768. [PMID: 33636288 DOI: 10.1016/j.neulet.2021.135768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
PURPOSES The recently developed myelin imaging method, inhomogeneous magnetization transfer (ihMT), is a surrogate measure of myelin content. The goal of the current study was to investigate alterations in myelin integrity in patients with recurrent major depressive disorder (rMDD). METHODS Fifty-two patients with rMDD (36 female and 16 male) and 42 healthy controls (HC, 29 female and 13 male) were included. Two ihMT indices, quantitative ihMT (qihMT) and quantitative MT (qMT), were estimated from the ihMT data. A 50 white matter atlas was used to extract the regional quantitative values for each subject. The differences in qihMT and qMT values between the rMDD and HC groups were compared by a general linear model. Pearson correlation analyses were conducted to investigate associations between the significantly altered ihMT indices and clinical measures (Hamilton Depression Rating Scale scores and disease duration) in rMDD group. RESULTS The rMDD group showed significantly lower qihMT values in the fornix, left anterior limb of internal capsule, and left sagittal stratum, and lower qMT values in the fornix and left anterior limb of internal capsule than those of the HC group (p < 0.05, false discovery rate corrected). Both the qihMT and qMT values in the fornix of patients with rMDD were negatively correlated with disease duration (qihMT: r = -0.478, p < 0.001, Bonferroni corrected; qMT: r = -0.433, p = 0.001, Bonferroni corrected). CONCLUSION Our findings suggested that rMDD is associated with myelin impairment in the fornix, left anterior limb of internal capsule, and left sagittal stratum. In addition, this disruption of myelin integrity in the fornix could be cumulative as the disease progresses.
Collapse
Affiliation(s)
- Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Wentao Lai
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Wentao Jiang
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Xia Liu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, 100176, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Zhifeng Zhou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| |
Collapse
|
8
|
Jakobs M, Lee DJ, Lozano AM. Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation. Neuropharmacology 2019; 171:107860. [PMID: 31765650 DOI: 10.1016/j.neuropharm.2019.107860] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
At times of an aging population and increasing prevalence of neurodegenerative disorders, effective medical treatments remain limited. Therefore, there is an urgent need for new therapies to treat Alzheimer's disease (AD). Deep brain stimulation (DBS) is thought to address the neuronal network dysfunction of this disorder and may offer new therapeutic options. Preliminary evidence suggests that DBS of the fornix may have effects on cognitive decline, brain glucose metabolism, hippocampal volume and cortical grey matter volume in certain patients with mild AD. Rodent studies have shown that increase of cholinergic neurotransmitters, hippocampal neurogenesis, synaptic plasticity and reduction of amyloid plaques are associated with DBS. Currently a large phase III study of fornix DBS is assessing efficacy in patients with mild AD aged 65 years and older. The Nucleus basalis of Meynert has also been explored in a phase I study in of mild to moderate AD and was tolerated well regardless of the lack of benefit. Being an established therapy for Parkinson's Disease (PD), DBS may exert some disease-modifying traits rather than being a purely symptomatic treatment. There is evidence of dopaminergic neuroprotection in animal models and some suggestion that DBS may influence the natural progression of the disorder. Neuromodulation may possibly have beneficial effects on course of different neurodegenerative disorders compared to medical therapy alone. For dementias, functional neurosurgery may provide an adjunctive option in patient care. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, Division of Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Darrin J Lee
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|