1
|
Pinoșanu EA, Pîrșcoveanu D, Albu CV, Burada E, Pîrvu A, Surugiu R, Sandu RE, Serb AF. Rhoa/ROCK, mTOR and Secretome-Based Treatments for Ischemic Stroke: New Perspectives. Curr Issues Mol Biol 2024; 46:3484-3501. [PMID: 38666949 PMCID: PMC11049286 DOI: 10.3390/cimb46040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.
Collapse
Affiliation(s)
- Elena Anca Pinoșanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| | - Denisa Pîrșcoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Andrei Pîrvu
- Dolj County Regional Centre of Medical Genetics, Clinical Emergency County Hospital Craiova, St. Tabaci, No. 1, 200642 Craiova, Romania;
| | - Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Alina Florina Serb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
Nazarinia D, Moslehi A, Hashemi P. (-)-α-bisabolol exerts neuroprotective effects against pentylenetetrazole-induced seizures in rats by targeting inflammation and oxidative stress. Physiol Behav 2023; 272:114351. [PMID: 37714321 DOI: 10.1016/j.physbeh.2023.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Epilepsy is the most common neurological disorder which is accompanied with behavioral and psychiatric alternations. Current evidences have shown that (-)-α-bisabolol (BSB) possess anti-inflammatory and antioxidative effects in several animal studies. Here, we conducted present study to evaluate its neuroprotective effects against pentylenetetrazole (PTZ)-induced seizures in rats. We used fifty male rats and they were randomly assigned into 5 groups control, BSB100, PTZ, BSB50 + PTZ, BSB100 + PTZ. The animals intraperitoneally received PTZ (45 mg/kg) for ten consecutive days to induce epilepsy model. BSB in doses of 50 and 100 mg/kg was administrated orally one hour before PTZ administration for ten days. The elevated plus maze (EPM) test was carried out to assess anxiety-like behavior. The seizure intensity was evaluated according to modifies Racine's convulsion scale (RCS). Y-maze and passive avoidance were utilized to assess working memory and aversive memory. The expression of pro-inflammatory cytokines and oxidative stress factors were measured using the enzyme-linked immunosorbent assay (ELISA). The neuronal cell loss in the hilar region was assessed using Nissl staining. Results showed that PTZ-treated rats had more seizure intensity, anxiety-like behavior, memory deficits, higher levels of TNF-α, IL-1β, and oxidative markers. Pre-treatment with BSB 100 significantly inhibited seizure intensity, anxiety-like behavior, and memory deficits; reduced levels of TNF-α, IL-1β, and MDA oxidative markers. Collectively, outcome of this work shows that BSB at the dose of 100 mg/kg may exert neuroprotective effects by mitigating seizures, oxidative stress, and neuroinflammation, and ameliorates memory and anxiety disorders in the PTZ-induced seizure rats.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Ahmadreza Moslehi
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, KurdistanUniversity of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
4
|
Li J, Wang K, Liu M, He J, Zhang H, Liu H. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway. J Mol Histol 2023:10.1007/s10735-023-10120-1. [PMID: 37186301 DOI: 10.1007/s10735-023-10120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Dexmedetomidine has been shown to protect against cerebral ischemia-reperfusion injury (CIRI). Nevertheless, the precise mechanism is obscure. In order to explore the effect of dexmedetomidine pre-conditioning on autophagy against CIRI in rats, middle cerebral artery occlusion (MCAO) was conducted to establish cerebral ischemia-reperfusion (I/R) model in male SD rats with 2 h ischemia and 24 h reperfusion. Dexmedetomidine was delivered to rats at 10, 50 and 100 µg/kg doses respectively, and LY294002, a PI3K/Akt/mTOR pathway inhibitor, was administered at 10 mg/kg intraperitoneally 30 min before MCAO. Neurological deficit score was assessed and cerebral infarct size was detected by TTC staining. Morris water maze (MWM) was performed to estimate spatial learning and memory ability. Furthermore, to detect activity of PI3K/Akt/mTOR pathway and autophagy, p-Akt, p-mTOR, Beclin-1 and LC3 were measured by western blot. Our findings revealed that 50 and 100 µg/kg of dexmedetomidine pretreatment could improve the neurological deficit score and reduce cerebral infarct size after CIRI, while these effects were markedly suppressed by LY294002. In MWM test, dexmedetomidine was confirmed to shorten escape latency and increase times across platform after CIRI. Nevertheless, LY294002 pretreatment eliminated the improvement of dexmedetomidine on spatial learning and memory ability. Furthermore, dexmedetomidine pretreatment reduced ratios of Beclin-1 and LC3II/LC3I and elevated p-Akt/Akt and p-mTOR/mTOR after CIRI. However, above effects of dexmedetomidine were partly reversed by LY294002. Overall, dexmedetomidine pretreatment exerted neuroprotection against CIRI in rats by attenuating autophagy via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China.
| | - Keyan Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Jinhua He
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Huanhuan Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Huan Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, 050051, China
| |
Collapse
|
5
|
Nazarinia D, Karimpour S, Hashemi P, Dolatshahi M. Neuroprotective effects of Royal Jelly (RJ) against pentylenetetrazole (PTZ)-induced seizures in rats by targeting inflammation and oxidative stress. J Chem Neuroanat 2023; 129:102255. [PMID: 36878412 DOI: 10.1016/j.jchemneu.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epilepsy is a chronic neurological condition in which inflammation and oxidative stress play a key role in the pathogenesis. Recently, several studies have suggested that Royal Jelly (RJ) has antioxidant effects. Nevertheless, there is no evidence of its effectiveness against epilepsy. Here, we evaluated its neuroprotective effects at different doses (100 and 200 mg/kg) against pentylenetetrazole (PTZ)-induced seizures. Fifty male Wistar rats were randomly divided into five groups: control, PTZ, RJ100 + PTZ, RJ200 + PTZ and RJ100. In order to establish epilepsy model, 45 mg/kg of PTZ was injected intraperitoneally for 10 consecutive days. Seizure parameters were graded based on Racine's 7-point classification. Elevated-plus maze, Y maze and shuttle box tests were carried out to assess anxiety-like behavior, short-term memory, and passive avoidance memory, respectively. We used ELISA technique to measure the expression of the pro-inflammatory cytokines and oxidative stress factors. Also, neuronal loss in the hippocampal CA3 region was determined using Nissl staining. Our findings showed that PTZ-treated rats had more seizure intensity, anxiety-like behavior, memory dysfunction, higher levels of TNF-α, IL-1β, and oxidative markers. RJ could allay seizure severity and duration. It also improved memory function as well as anxiety level. In terms of biochemical assessment, RJ gave rise to a significant decrease in the level of IL-1β, TNF-α and MDA and it restored the activities of GPX and SOD enzymes. Hence, our study shows that RJ contains anti-inflammatory and antioxidative effects which contribute to less neuronal damage in the PTZ-induced epilepsy model.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Sepideh Karimpour
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
6
|
Behzadifard M, Aboutaleb N, Dolatshahi M, Khorramizadeh M, Mirshekari Jahangiri H, Kord Z, Nazarinia D. Neuroprotective Effects of Conditioned Medium of Mesenchymal Stem Cells (MSC-CM) as a Therapy for Ischemic Stroke Recovery: A Systematic Review. Neurochem Res 2022; 48:1280-1292. [PMID: 36581731 DOI: 10.1007/s11064-022-03848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
It has been reported that the therapeutic potential of stem cells is mainly mediated by their paracrine factors. In order to identify the effects of conditioned medium of mesenchymal stem cells (MSC-CM) against stroke, a systematic review was conducted. We searched PubMed, Scopus, and ISI Web of Science databases for all available articles relevant to the effects of MSC-CM against the middle cerebral artery occlusion (MCAO) model of ischemic stroke until August 2022. The quality of the included studies was evaluated using The STAIR scale. During the systematic search, a total of 356 published articles were found. A total of 15 datasets were included following screening for eligibility. The type of cerebral ischemia was the MCAO model and CM was obtained from MSCs. The results showed that the therapeutic time window can be considered a crucial factor when researchers use MSC-CM for stroke therapy. In addition, MSC-CM therapy contributes to functional recovery and reduces infarct volume after stroke by targeting different cellular signaling pathways. Our findings showed that MSC-CM therapy has the ability to improve functional recovery and attenuate brain infarct volume after ischemic stroke in preclinical studies. We hope our study accelerates needed progress towards clinical trials.
Collapse
Affiliation(s)
- Mahin Behzadifard
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Maryam Khorramizadeh
- Department of Medical Physics, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Zeynab Kord
- Department of Anaesthesiology, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Donya Nazarinia
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran. .,Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
7
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
OM-MSCs Alleviate the Golgi Apparatus Stress Response following Cerebral Ischemia/Reperfusion Injury via the PEDF-PI3K/Akt/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4805040. [PMID: 34815829 PMCID: PMC8606042 DOI: 10.1155/2021/4805040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo. Our results showed that the level of GOLPH3 protein, reactive oxygen species (ROS), and Ca2+ was upregulated, SPCA1 level was downregulated, and GA fragmentation was increased in ischemic stroke models, and OM-MSC treatment clearly ameliorated these GA stress responses in vitro and in vivo. Subsequently, the knockdown of PEDF in OM-MSCs using PEDF-specific siRNA further demonstrated that secretion of PEDF in OM-MSCs protected OGD/R-treated N2a cells and MCAO rats from GA stress response. Additionally, rescue experiment using specific pathway inhibitors suggested that OM-MSCs could promote the phosphorylation of the PI3K/Akt/mTOR pathway, thereby mitigating OGD/R-induced GA stress response and excessive autophagy. In conclusion, OM-MSCs minimized the GA stress response following cerebral IRI, at least partially, through the PEDF-PI3K/Akt/mTOR pathway.
Collapse
|
9
|
Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L. Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition. Int J Mol Med 2021; 48:178. [PMID: 34296284 PMCID: PMC8354314 DOI: 10.3892/ijmm.2021.5011] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability. Diabetes mellitus, characterized by hyperglycemia, is a common concomitant disease of ischemic stroke, which is associated with autophagy dysfunction and blood‑brain barrier (BBB) damage following cerebral ischemia/reperfusion (I/R) injury. At present, there is no effective treatment strategy for the disease. The purpose of the present study was to explore the molecular mechanisms underlying the protective effects of selenium on the BBB following I/R injury in hyperglycemic rats. Middle cerebral artery occlusion was performed in diabetic Sprague‑Dawley rats. Treatment with selenium and the autophagy inhibitor 3‑methyladenine significantly reduced cerebral infarct volume, brain water content and Evans blue leakage, while increasing the expression of tight junction (TJ) proteins and decreasing that of autophagy‑related proteins (P<0.05). In addition, selenium increased the phosphorylation levels of PI3K, AKT and mTOR (P<0.05). A mouse bEnd.3 brain microvascular endothelial cell line was co‑cultured in vitro with an MA‑h mouse astrocyte‑hippocampal cell line to simulate the BBB. The cells were then subjected to hyperglycemia, followed by oxygen‑glucose deprivation for 1 h and reoxygenation for 24 h. It was revealed that selenium increased TJ protein levels, reduced BBB permeability, decreased autophagy levels and enhanced the expression of phosphorylated (p)‑AKT/AKT and p‑mTOR/mTOR proteins (P<0.05). Treatment with wortmannin (an inhibitor of PI3K) significantly prevented the beneficial effects of selenium on the BBB, whereas insulin‑like growth factor 1 (a PI3K activator) mimicked the effects of selenium. In conclusion, the present findings indicated that selenium can inhibit autophagy by regulating the PI3K/AKT/mTOR signaling pathway, significantly preventing BBB damage following cerebral I/R injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- Biao Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaqiong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanmei Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaopeng Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xilin Shen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianzhong Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Jing
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
10
|
Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous Administration of Human Amniotic Mesenchymal Stem Cells in the Subacute Phase of Cerebral Infarction in a Mouse Model Ameliorates Neurological Disturbance by Suppressing Blood Brain Barrier Disruption and Apoptosis via Immunomodulation. Cell Transplant 2021; 30:9636897211024183. [PMID: 34144647 PMCID: PMC8216398 DOI: 10.1177/09636897211024183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuro-inflammation plays a key role in the pathophysiology of brain infarction. Cell therapy offers a novel therapeutic option due to its effect on immunomodulatory effects. Amniotic stem cells, in particular, show promise owing to their low immunogenicity, tumorigenicity, and easy availability from amniotic membranes discarded following birth. We have successfully isolated and expanded human amniotic mesenchymal stem cells (hAMSCs). Herein, we evaluated the therapeutic effect of hAMSCs on neurological deficits after brain infarction as well as their immunomodulatory effects in a mouse model in order to understand their mechanisms of action. One day after permanent occlusion of the middle cerebral artery (MCAO), hAMSCs were intravenously administered. RT-qPCR for TNFα, iNOS, MMP2, and MMP9, immunofluorescence staining for iNOS and CD11b/c, and a TUNEL assay were performed 8 days following MCAO. An Evans Blue assay and behavioral tests were performed 2 days and several months following MCAO, respectively. The results suggest that the neurological deficits caused by cerebral infarction are improved in dose-dependent manner by the administration of hAMSCs. The mechanism appears to be through a reduction in disruption of the blood brain barrier and apoptosis in the peri-infarct region through the suppression of pro-inflammatory cytokines and the M2-to-M1 phenotype shift.
Collapse
Affiliation(s)
- Yasunori Yoshida
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kotaro Tatebayashi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Manabu Shirakawa
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Medical Innovation, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, 12818, Nishinomiya, Hyogo, Japan.,Laboratory of Psychology, General Education Center, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| |
Collapse
|
11
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
12
|
He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front Neurosci 2021; 15:641157. [PMID: 33716657 PMCID: PMC7952613 DOI: 10.3389/fnins.2021.641157] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide; currently available treatment approaches for ischemic stroke are to restore blood flow, which reduce disability but are time limited. The interruption of blood flow in ischemic stroke contributes to intricate pathophysiological processes. Oxidative stress and inflammatory activity are two early events in the cascade of cerebral ischemic injury. These two factors are reciprocal causation and directly trigger the development of autophagy. Appropriate autophagy activity contributes to brain recovery by reducing oxidative stress and inflammatory activity, while autophagy dysfunction aggravates cerebral injury. Abundant evidence demonstrates the beneficial impact of mesenchymal stem cells (MSCs) and secretome on cerebral ischemic injury. MSCs reduce oxidative stress through suppressing reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and transferring healthy mitochondria to damaged cells. Meanwhile, MSCs exert anti-inflammation properties by the production of cytokines and extracellular vesicles, inhibiting proinflammatory cytokines and inflammatory cells activation, suppressing pyroptosis, and alleviating blood–brain barrier leakage. Additionally, MSCs regulation of autophagy imbalances gives rise to neuroprotection against cerebral ischemic injury. Altogether, MSCs have been a promising candidate for the treatment of ischemic stroke due to their pleiotropic effect.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Zhang X, Wang N, Huang Y, Li Y, Li G, Lin Y, Atala AJ, Hou J, Zhao W. Extracellular vesicles from three dimensional culture of human placental mesenchymal stem cells ameliorated renal ischemia/reperfusion injury. Int J Artif Organs 2021; 45:181-192. [PMID: 33467948 DOI: 10.1177/0391398820986809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Three-dimensional (3D) culture has been reported to increase the therapeutic potential of mesenchymal stem cells (MSCs). The present study assessed the therapeutic efficacy of extracellular vesicles (EVs) from 3D cultures of human placental MSCs (hPMSCs) for acute kidney injury (AKI). METHODS The supernatants from monolayer culture (2D) and 3D culture of hPMSCs were ultra-centrifuged for EVs isolation. C57BL/6 male mice were submitted to 45 min bilateral ischemia of kidney, followed by renal intra-capsular administration of EVs within a 72 h reperfusion period. Histological, immunohistochemical, and ELISA analyses of kidney samples were performed to evaluate cell death and inflammation. Kidney function was evaluated by measuring serum creatinine and urea nitrogen. The miRNA expression profiles of EVs from 2D and 3D culture of hPMSCs were evaluated using miRNA microarray analysis. RESULTS The 3D culture of hPMSCs formed spheroids with different diameters depending on the cell density seeded. The hPMSCs produced significantly more EVs in 3D culture than in 2D culture. More importantly, injection of EVs from 3D culture of hPMSCs into mouse kidney with ischemia-reperfusion (I/R)-AKI was more beneficial in protecting from progression of I/R than those from 2D culture. The EVs from 3D culture of hPMSCs were more efficient against apoptosis and inflammation than those from 2D culture, which resulted in a reduction in tissue damage and amelioration of renal function. MicroRNA profiling analysis revealed that a set of microRNAs were significantly changed in EVs from 3D culture of hPMSCs, especially miR-93-5p. CONCLUSION The EVs from 3D culture of hPMSCs have therapeutic potential for I/R-AKI.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Wang
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Li
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Gang Li
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Anthony J Atala
- Wake of Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weixin Zhao
- Wake of Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
15
|
Nazarinia D, Sharifi M, Dolatshahi M, Nasseri Maleki S, Madani Neishaboori A, Aboutaleb N. FoxO1 and Wnt/β-catenin signaling pathway: Molecular targets of human amniotic mesenchymal stem cells-derived conditioned medium (hAMSC-CM) in protection against cerebral ischemia/reperfusion injury. J Chem Neuroanat 2021; 112:101918. [PMID: 33421540 DOI: 10.1016/j.jchemneu.2021.101918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023]
Abstract
Ischemia-reperfusion (I/R) injury has weakened the effects of available treatment options for ischemic stroke. Although conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) has been reported to exert protective effect against stroke, detailed knowledge about its possible molecular mechanisms is not still completely available. The present study was designed to investigate whether hAMSC-CM can modulate FoxO1 and Wnt/β-catenin signaling pathway after ischemic stroke to create neuroprotective effects. Middle cerebral artery occlusion (MCAO) model with male Wistar rats was used to evaluate the effects of hAMSC-CM on activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and apoptotic cell death. The results demonstrated that induction of MCAO significantly reduced activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and enhanced apoptotic cell death (P < 0.05). In addition, treatment by hAMSC-CM immediately after cerebral reperfusion resulted in significantly reduced infarct size and increased activities of FoxO1, Wnt/β-catenin signaling pathway, and restoring endogenous antioxidant system and suppressing apoptotic cell death (P < 0.05). Likewise, increased activity of Wnt/β-catenin signaling pathway resulted in suppressing the neuroinflammation by inhibiting the expression of TNF-α and increasing the expression of IL-10. These findings demonstrate that hAMSC-CM can be considered as an excellent candidate in the treatment of acute ischemic stroke in clinical routine.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Solmaz Nasseri Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arian Madani Neishaboori
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Gao L, Song Z, Mi J, Hou P, Xie C, Shi J, Li Y, Manaenko A. The Effects and Underlying Mechanisms of Cell Therapy on Blood-Brain Barrier Integrity After Ischemic Stroke. Curr Neuropharmacol 2020; 18:1213-1226. [PMID: 32928089 PMCID: PMC7770640 DOI: 10.2174/1570159x18666200914162013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Zhenghong Song
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Jianhua Mi
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Pinpin Hou
- Central Laboratory, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 201112, China
| | - Chong Xie
- Departmeng of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianquan Shi
- Departmeng of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yansheng Li
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Donepezil attenuates injury following ischaemic stroke by stimulation of neurogenesis, angiogenesis, and inhibition of inflammation and apoptosis. Inflammopharmacology 2020; 29:153-166. [PMID: 33201349 DOI: 10.1007/s10787-020-00769-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Donepezil has proven to be an effective drug to reduce neuronal death and subsequently injury in neurodegenerative diseases. The current study evaluated the neuroprotective effects of donepezil in a rat model of ischaemic stroke and explored possible mechanisms which by this drug may reduce cell death. Temporary middle cerebral artery occlusion (tMCAO) was exerted for 45 min to induce ischaemic stroke. The animals were assigned into five groups: sham, control, and three groups treated with different doses of donepezil. Donepezil was intraperitoneally (IP) injected 4 h after reperfusion for 10 consecutive days. Infarct size was determined using TTC staining. The expression of proteins was evaluated using immunohistochemistry assays. Compared with the control group, infarct size was significantly reduced in tMCAO rats treated with different doses of donepezil. Moreover, our results showed significant decreased expression levels of apoptotic markers and pro-inflammatory mediators after treatment with different doses of donepezil for 10 days (P < 0.05). Likewise, significant increase of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) proteins were found in tMCAO rats treated with donepezil compared with the control group (P < 0.05). Collectively, our findings show the validity of donepezil as a new therapeutic agent for attenuation of injury following ischaemic stroke through attenuation of inflammation and improvement of mitochondrial function, neurogenesis, and angiogenesis.
Collapse
|
18
|
Mokhtari B, Aboutaleb N, Nazarinia D, Nikougoftar M, Razavi Tousi SMT, Molazem M, Azadi MR. Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:879-885. [PMID: 32774809 PMCID: PMC7395194 DOI: 10.22038/ijbms.2020.40886.9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Existing studies have demonstrated that intravenous and intramyocardial-administrated mesenchymal stem cells (MSCs) lead to tissue repair after cardiac disorders. We compared the efficiency of both administration methods. MATERIALS AND METHODS A rat model of isoproterenol-induced heart failure (ISO-HF) was established to compare the effects of intravenous and intramyocardial-administrated MSCs on cardiac fibrosis and function. The animals were randomly assigned into six groups: i) control or normal, ii) ISO-HF (HF) iii) ISO-HF rats treated with intramyocardial administration of culture medium (HF+IM/CM), iv) ISO-HF rats treated with intravenous administration of culture medium ( HF+IV/CM), v) ISO-HF rats treated with intravenous administration of MSCs (HF+IV/MSCs), vi) ISO-HF rats treated with intramyocardial administration of MSCs ( HF+IM/MSCs). Cultured MSCs and culture medium were administrated at 4 weeks after final injection of ISO. Heart function, identification of MSCs, osteogenic differentiation, adipogenic differentiation, cardiac fibrosis and tissue damage were evaluated by echocardiography, flow-cytometery, von Kossa, oil red O, Masson's trichrome and H & E staining, respectively. RESULTS Both intravenous and intramyocardial MSCs therapy significantly improved heart function and reduced cardiac fibrosis and tissue damage (P<0.05), whereas the cultured medium had no beneficial effects. CONCLUSION In sum, our results confirm the validity of both administration methods in recovery of HF, but more future research is required.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad Molazem
- Department of Veterinary Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Azadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Amniotic membrane mesenchymal stem cells labeled by iron oxide nanoparticles exert cardioprotective effects against isoproterenol (ISO)-induced myocardial damage by targeting inflammatory MAPK/NF-κB pathway. Drug Deliv Transl Res 2020; 11:242-254. [PMID: 32441012 DOI: 10.1007/s13346-020-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study is to investigate the protective effects of human amniotic membrane-derived mesenchymal stem cells (hAMSCs) labeled by superparamagnetic iron oxide nanoparticles (SPIONs) against isoproterenol (ISO)-induced myocardial injury in the presence and absence of a magnetic field. ISO was injected subcutaneously for 4 consecutive days to induce myocardial injury in male Wistar rats. The hAMSCs were incubated with 100 μg/ml SPIONs and injected to rats in magnet-dependent and magnet-independent groups via the tail vein. The size and shape of nanoparticles were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Prussian blue staining was used to determine cell uptake of nanoparticles. Myocardial fibrosis, heart function, characterization of hAMSCs, and histopathological changes were determined using Masson's trichrome, echocardiography, flow cytometry, and H&E staining, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to the expression pro-inflammatory cytokines. Immunohistochemistry assay was used to determine the expression of nuclear factor-κB (NF-κB) and the Ras/mitogen-activated protein kinase (MAPK). SPION-labeled MSCs in the presence of magnetic field significantly improved cardiac function and reduced fibrosis and tissue damage by suppressing inflammation in a NF-κB/MAPK-dependent mechanism (p < 0. 05). Collectively, our findings demonstrate that SPION-labeled MSCs in the presence of magnetic field can be a good treatment option to reduce inflammation following myocardial injury. Graphical abstract.
Collapse
|
20
|
Bai X, Xu J, Zhu T, He Y, Zhang H. The Development of Stem Cell-Based Treatment for Acute Ischemic Cerebral Injury. Curr Stem Cell Res Ther 2020; 15:509-521. [PMID: 32228429 DOI: 10.2174/1574888x15666200331135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
Acute ischemic brain injury is a serious disease that severely endangers the life safety of patients. Such disease is hard to predict and highly lethal with very limited effective treatments currently. Although currently, there exist treatments like drug therapy, hyperbaric oxygen therapy, rehabilitation therapy and other treatments in clinical practice, these are not significantly effective for patients when the situation is severe. Thus scientists must explore more effective treatments. Stem cells are undifferentiated cells with a strong potential of self-renewal and differentiate into various types of tissues and organs. Their emergence has brought new hopes for overcoming difficult diseases, further improving medical technology and promoting the development of modern medicine. Some combining therapies and genetically modified stem cell therapy have also been proven to produce obvious neuroprotective function for acute ischemic brain injury. This review is an introduction to the current research findings and discusses the definition, origin and classification of stem cells, as well as the future prospects of the stem cell-based treatment for acute ischemic cerebral injury.
Collapse
Affiliation(s)
- Xiaojie Bai
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jun Xu
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tiantian Zhu
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanyuan He
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Zhang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|