1
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
2
|
Ivanov AS, Nikolaev KG, Stekolshchikova AA, Tesfatsion WT, Yurchenko SO, Novoselov KS, Andreeva DV, Rubtsova MY, Vorovitch MF, Ishmukhametov AA, Egorov AM, Skorb EV. Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid–Metal Interface. ACS APPLIED BIO MATERIALS 2020; 3:7352-7356. [DOI: 10.1021/acsabm.0c00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Artemii S. Ivanov
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Konstantin G. Nikolaev
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Anna A. Stekolshchikova
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Weini T. Tesfatsion
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | | | - Kostya S. Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Daria V. Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Maya Yu. Rubtsova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Mikhail F. Vorovitch
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Aydar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Alex M. Egorov
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| |
Collapse
|
3
|
Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography. Chromatographia 2019. [DOI: 10.1007/s10337-019-03773-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
5
|
Siegle AF, Trapp O. Improving the signal-to-noise ratio in gel permeation chromatography by Hadamard encoding. J Chromatogr A 2016; 1448:93-97. [DOI: 10.1016/j.chroma.2016.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
|
6
|
Simultaneous qualitation and quantitation of natural trans-1,4-polyisoprene from Eucommia ulmoides Oliver by gel permeation chromatography (GPC). J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1004:17-22. [DOI: 10.1016/j.jchromb.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022]
|
7
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
8
|
Jere KC, O'Neill HG, Potgieter AC, van Dijk AA. Chimaeric virus-like particles derived from consensus genome sequences of human rotavirus strains co-circulating in Africa. PLoS One 2014; 9:e105167. [PMID: 25268783 PMCID: PMC4181975 DOI: 10.1371/journal.pone.0105167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/21/2014] [Indexed: 12/04/2022] Open
Abstract
Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain.
Collapse
Affiliation(s)
- Khuzwayo C. Jere
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hester G. O'Neill
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Department of Microbiology, Biochemistry and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - A. Christiaan Potgieter
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Deltamune (Pty.) Ltd., Lyttelton, Centurion, South Africa
| | - Alberdina A. van Dijk
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
9
|
Castro-Acosta RM, Rodríguez-Limas WA, Valderrama B, Ramírez OT, Palomares LA. Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb Cell Fact 2014; 13:25. [PMID: 24533452 PMCID: PMC3928578 DOI: 10.1186/1475-2859-13-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Protein assemblies, such as virus-like particles, have increasing importance as vaccines, delivery vehicles and nanomaterials. However, their use requires stable assemblies. An important cause of loss of stability in proteins is oxidation, which can occur during their production, purification and storage. Despite its importance, very few studies have investigated the effect of oxidation in protein assemblies and their structural units. In this work, we investigated the role of in vitro oxidation in the assembly and stability of rotavirus VP6, a polymorphic protein. Results The susceptibility to oxidation of VP6 assembled into nanotubes (VP6NT) and unassembled VP6 (VP6U) was determined and compared to bovine serum albumin (BSA) as control. VP6 was more resistant to oxidation than BSA, as determined by measuring protein degradation and carbonyl content. It was found that assembly protected VP6 from in vitro metal-catalyzed oxidation. Oxidation provoked protein aggregation and VP6NT fragmentation, as evidenced by dynamic light scattering and transmission electron microscopy. Oxidative damage of VP6 correlated with a decrease of its center of fluorescence spectral mass. The in vitro assembly efficiency of VP6U into VP6NT decreased as the oxidant concentration increased. Conclusions Oxidation caused carbonylation, quenching, and destruction of aromatic amino acids and aggregation of VP6 in its assembled and unassembled forms. Such modifications affected protein functionality, including its ability to assemble. That assembly protected VP6 from oxidation shows that exposure of susceptible amino acids to the solvent increases their damage, and therefore the protein surface area that is exposed to the solvent is determinant of its susceptibility to oxidation. The inability of oxidized VP6 to assemble into nanotubes highlights the importance of avoiding this modification during the production of proteins that self-assemble. This is the first time that the role of oxidation in protein assembly is studied, evidencing that oxidation should be minimized during the production process if VP6 nanotubes are required.
Collapse
Affiliation(s)
| | | | | | | | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A,P, 510-3, C,P, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Palomares LA, Mena JA, Ramírez OT. Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: production of virus-like particles. Methods 2012; 56:389-95. [PMID: 22300754 DOI: 10.1016/j.ymeth.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/11/2022] Open
Abstract
The insect cell-baculovirus system (IC-BEVS) is widely used for the production of recombinant viral proteins for vaccine applications. It is especially suitable for the production of virus-like particles, which often require the simultaneous production of several recombinant proteins. Here, the available tools and process requirements for the simultaneous production of several recombinant proteins using the IC-BEVS are discussed. The production of double-layered rotavirus like particles is used as a specific example for the simultaneous production of two recombinant proteins. Methods to quantify VLP in small samples are described. The multiplicity and time of infection are presented as tools to manipulate protein concentration, and the effect on protein concentration ratios on the assembly efficiency of double-layered rotavirus like particles is discussed. It was found that not only the ratio between the recombinant proteins is determinant of VLP assembly efficiency, but also that assembly efficiency is related to the characteristics of the assembled proteins. This is the first time that kinetics of VLP production are followed during cultures, and that the assembly efficiency is quantitatively determined.
Collapse
Affiliation(s)
- Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico.
| | | | | |
Collapse
|
11
|
Roldão A, Vicente T, Peixoto C, Carrondo MJT, Alves PM. Quality control and analytical methods for baculovirus-based products. J Invertebr Pathol 2011; 107 Suppl:S94-105. [PMID: 21784235 DOI: 10.1016/j.jip.2011.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/24/2011] [Indexed: 11/28/2022]
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
12
|
Plascencia-Villa G, Mena JA, Castro-Acosta RM, Fabián JC, Ramírez OT, Palomares LA. Strategies for the purification and characterization of protein scaffolds for the production of hybrid nanobiomaterials. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1105-11. [DOI: 10.1016/j.jchromb.2011.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/22/2010] [Accepted: 03/13/2011] [Indexed: 11/30/2022]
|
13
|
Urbas L, Jarc BL, Barut M, Zochowska M, Chroboczek J, Pihlar B, Szolajska E. Purification of recombinant adenovirus type 3 dodecahedric virus-like particles for biomedical applications using short monolithic columns. J Chromatogr A 2011; 1218:2451-9. [DOI: 10.1016/j.chroma.2011.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 02/07/2023]
|
14
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 590] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
15
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
16
|
Castro-Acosta RM, Revilla AL, Ramírez OT, Palomares LA. Separation and quantification of double- and triple-layered rotavirus-like particles by CZE. Electrophoresis 2010; 31:1376-81. [PMID: 20336682 DOI: 10.1002/elps.200900558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Virus-like particles have been successfully used as safe vaccines, as their structure is identical to their native counterparts but devoid of the viral genetic material. However, production of these complex structures is not easy, as recombinant proteins must assemble into virus-like particles. Techniques to differentiate assembled and soluble proteins, as well as assembly intermediaries often present in a sample, are required. An example of complex virus-like particles mixture occurs when rotavirus proteins are recombinantly expressed. Rotavirus-like particles (RLP) can be single (sl), double (dl), or triple layered (tl). The use of RLP preparations as vaccines requires their complete characterization, including separation and quantification of each RLP in a sample. In this work, CZE was evaluated for the separation and quantification of dl and triple-layered rotavirus-like particles (tlRLP). A fused-silica capillary with a deoxycholate running buffer efficiently separated dl and tlRLP in RLP preparations, as they migrated in two discrete peaks with electrophoretic mobilities of 1.24+/-0.04 and 2.95+/-0.03 Ti, respectively. Standard curves for dl and tlRLP were generated, and the response was linearly proportional to analyte concentration. The methodology developed was quantitative, specific, accurate, precise, and reproducible. CZE allowed the quantitative characterization of RLP preparations, which is required for evaluation of immunogens, for process development, and for quality control protocols.
Collapse
Affiliation(s)
- Ricardo M Castro-Acosta
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | | | | | | |
Collapse
|
17
|
Plascencia-Villa G, Saniger JM, Ascencio JA, Palomares LA, Ramírez OT. Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals. Biotechnol Bioeng 2009; 104:871-81. [PMID: 19655393 DOI: 10.1002/bit.22497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The structural characteristics and predefined constant size and shape of viral assemblies make them useful tools for nanobiotechnology, in particular as scaffolds for constructing highly organized novel nanomaterials. In this work it is shown for the first time that nanotubes formed by recombinant rotavirus VP6 protein can be used as scaffolds for the synthesis of hybrid nanocomposites. Rotavirus VP6 was produced by the insect cell-baculovirus expression vector system. Nanotubes of several micrometers in length and various diameters in the nanometer range were functionalized with Ag, Au, Pt, and Pd through strong (sodium borohydride) or mild (sodium citrate) chemical reduction. The nanocomposites obtained were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM) with energy dispersive spectroscopy (EDS), dynamic light scattering, and their characteristic plasmon resonance. The outer surface of VP6 nanotubes had intrinsic affinity to metal deposition that allowed in situ synthesis of nanoparticles. Furthermore, the use of preassembled recombinant protein structures resulted in highly ordered integrated materials. It was possible to obtain different extents and characteristics of the metal coverage by manipulating the reaction conditions. TEM revealed either a continuous coverage with an electrodense thin film when using sodium citrate as reductant or a discrete coverage with well-dispersed metal nanoparticles of diameters between 2 and 9 nm when using sodium borohydride and short reaction times. At long reaction times and using sodium borohydride, the metal nanoparticles coalesced and resulted in a thick metal layer. HRTEM-EDS confirmed the identity of the metal nanoparticles. Compared to other non-recombinant viral scaffolds used until now, the recombinant VP6 nanotubes employed here have important advantages, including a longer axial dimension, a dynamic multifunctional hollow structure, and the possibility of producing them massively by a safe and efficient bioprocess. Such characteristics confer important potential applications in nanotechnology to the novel nanobiomaterials produced here.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, CP 62250, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
18
|
Mellado MCM, Mena JA, Lopes A, Ramírez OT, Carrondo MJT, Palomares LA, Alves PM. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol Bioeng 2009; 104:674-86. [PMID: 19623564 DOI: 10.1002/bit.22430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Virus-like particles constitute potentially relevant vaccine candidates. Nevertheless, their behavior in vitro and assembly process needs to be understood in order to improve their yield and quality. In this study we aimed at addressing these issues and for that purpose triple- and double-layered rotavirus-like particles (TLP 2/6/7 and DLP 2/6, respectively) size and zeta potential were measured using dynamic light scattering at different physicochemical conditions, namely pH, ionic strength, and temperature. Both TLP and DLP were stable within a pH range of 3-7 and at 5-25 degrees C. Aggregation occurred at 35-45 degrees C and their disassembly became evident at 65 degrees C. The isoelectric points of TLP and DLP were 3.0 and 3.8, respectively. In vitro kinetics of TLP disassembly was monitored. Ionic strength, temperature, and the chelating agent employed determined disassembly kinetics. Glycerol (10%) stabilized TLP by preventing its disassembly. Disassembled TLP was able to reassemble by dialysis at high calcium conditions. VP7 monomers were added to DLP in the presence of calcium to follow in vitro TLP assembly kinetics; its assembly rate being mostly affected by pH. Finally, DLP and TLP were found to coexist under certain conditions as determined from all reaction products analyzed by capillary electrophoresis. Overall, these results contribute to the design of new strategies for the improvement of TLP yield and quality by reducing the VP7 detachment from TLP.
Collapse
|
19
|
Peralta A, Molinari P, Taboga O. Chimeric recombinant rotavirus-like particles as a vehicle for the display of heterologous epitopes. Virol J 2009; 6:192. [PMID: 19891790 PMCID: PMC2777876 DOI: 10.1186/1743-422x-6-192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 11/06/2009] [Indexed: 11/10/2022] Open
Abstract
In order to improve the presentation and immunogenicity of single epitopes, virus-like particles (VLPs) are being used as platforms for the display of foreing epitopes on their surface. The rotavirus major capsid protein VP6 has the ability to self-assemble into empty non-infectious VLPs. In the present study, we analyzed the use of double layered VLPs (made up of VP2 and VP6 rotavirus proteins) as carriers to display a 14 amino acid epitope fused to three different aminoacidic regions of VP6 exposed on the surface of VLPs. Although all chimeric protein were correctly expressed in insect cells, only one of them resulted in spontaneous assembly of VLPs displaying the heterologous epitope on their surface, confirmed by sandwich ELISA and electron microscopy. Furthermore, the injection of chimeric VLPs into mice elicited higher antibody titers than the monomeric chimeric protein. Our results identify an specific amino acid region of VP6 which allows the insertion of at least a 14 amino acid heterolgous epitope and demonstrate its potential as immunogenic carrier.
Collapse
Affiliation(s)
- Andrea Peralta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av, Rivadavia 1917 (c,p,1033) Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | |
Collapse
|
20
|
Challenges for the production of virus-like particles in insect cells: The case of rotavirus-like particles. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Intracellular dynamics in rotavirus-like particles production: Evaluation of multigene and monocistronic infection strategies. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|