1
|
Görgens C, Guddat S, Thomas A, Wachsmuth P, Orlovius AK, Sigmund G, Thevis M, Schänzer W. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry. J Pharm Biomed Anal 2016; 131:482-496. [PMID: 27693991 DOI: 10.1016/j.jpba.2016.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β2-agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (<2kDa) and are commonly determined by laborious and time-consuming stand-alone assays. The assay was fully validated for qualitative purposes considering the parameters specificity, robustness (rRT: <2%), intra- (CV: 1.7-18.4 %) and inter-day precision (CV: 2.3-18.3%) at three concentration levels, linearity (R2>0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects.
Collapse
Affiliation(s)
- Christian Görgens
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Sven Guddat
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Andreas Thomas
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Philipp Wachsmuth
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Anne-Katrin Orlovius
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Gerd Sigmund
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
2
|
Esposito S, Deventer K, Giron AJ, Roels K, Herregods L, Verstraete A, Van Eenoo P. Investigation of urinary excretion of hydroxyethyl starch and dextran by uhplc-hrms in different acquisition modes. Biol Sport 2014; 31:95-104. [PMID: 24899772 PMCID: PMC4042655 DOI: 10.5604/20831862.1096045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2014] [Indexed: 11/13/2022] Open
Abstract
Plasma volume expanders (PVEs) such as hydroxyethyl starch (HES) and dextran are misused in sports because they can prevent dehydration and reduce haematocrit values to mask erythropoietin abuse. Endogenous hydrolysis generates multiple HES and dextran oligosaccharides which are excreted in urine. Composition of the urinary metabolic profiles of PVEs varies depending on post-administration time and can have an impact on their detectability. In this work, different mass spectrometry data acquisition modes (full scan with and without in-source collision-induced dissociation) were used to study urinary excretion profiles of HES and dextran, particularly by investigating time-dependent detectability of HES and dextran urinary oligosaccharide metabolites in post-administration samples. In-source fragmentation yielded the best results in terms of limit of detection (LOD) and detection times, whereas detection of HES and dextran metabolites in full scan mode with no in-source fragmentation is related to recent administration (< 24 hours). Urinary excretion studies showed detection windows for HES and dextran respectively of 72 and 48 hours after administration. Dextran concentrations were above the previously proposed threshold of 500 µg · mL(-1) for 12 hours. A "dilute-and-shoot" method for the detection of HES and dextran in human urine by ultra-high-pressure liquid chromatography-electrospray ionization-high resolution Orbitrap™ mass spectrometry was developed for this study. Validation of the method showed an LOD in the range of 10-500 µg · mL(-1) for the most significant HES and dextran metabolites in the different modes. The method allows retrospective data analysis and can be implemented in existing high-resolution mass spectrometry-based doping control screening analysis.
Collapse
Affiliation(s)
- S Esposito
- Doping Control Laboratory, Ghent University (UGent), Technologiepark 30, 9052 Zwijnaarde, Belgium
| | - K Deventer
- Doping Control Laboratory, Ghent University (UGent), Technologiepark 30, 9052 Zwijnaarde, Belgium
| | - A J Giron
- Department of Analytical Chemistry, University of Extremadura, Avda.deElvas s/n, 06006 Badajoz, Spain
| | - K Roels
- Doping Control Laboratory, Ghent University (UGent), Technologiepark 30, 9052 Zwijnaarde, Belgium
| | - L Herregods
- Department of Anesthesia, Ghent University Hospital, De Pintelaan 185, 9000 Gent Belgium
| | - A Verstraete
- Department of Clinical Biology, microbiology and immunology, Ghent University Hospital, De Pintelaan 185, 9000 Gent Belgium
| | - P Van Eenoo
- Doping Control Laboratory, Ghent University (UGent), Technologiepark 30, 9052 Zwijnaarde, Belgium
| |
Collapse
|
3
|
Mazzarino M, Fiacco I, Torre X, Botrè F. A rapid analytical method for the detection of plasma volume expanders and mannitol based on the urinary saccharides and polyalcohols profile. Drug Test Anal 2011; 3:896-905. [DOI: 10.1002/dta.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome; Italy
| | - Ilaria Fiacco
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome; Italy
| | - Xavier Torre
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome; Italy
| | | |
Collapse
|
4
|
Guddat S, Solymos E, Orlovius A, Thomas A, Sigmund G, Geyer H, Thevis M, Schänzer W. High-throughput screening for various classes of doping agents using a new ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry multi-target approach. Drug Test Anal 2011; 3:836-50. [DOI: 10.1002/dta.372] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/31/2011] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
Affiliation(s)
- S. Guddat
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - E. Solymos
- Eötvös Loránd University; Joint Research and Training Laboratory on Separation Techniques; Budapest; Hungary
| | | | - A. Thomas
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - G. Sigmund
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - H. Geyer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - M. Thevis
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - W. Schänzer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| |
Collapse
|
5
|
Kolmonen M, Leinonen A, Kuuranne T, Pelander A, Deventer K, Ojanperä I. Specific screening method for dextran and hydroxyethyl starch in human urine by size exclusion chromatography–in-source collision-induced dissociation–time-of-flight mass spectrometry. Anal Bioanal Chem 2011; 401:563-71. [DOI: 10.1007/s00216-011-4838-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022]
|
6
|
Abstract
Plasma volume expanders comprise a heterogeneous group of substances used in medicine that are intravenously administered in cases of great blood loss owing to surgery or medical emergency. These substances, however, can also be used to artificially enhance performance of healthy athletes in sport activities, and to mask the presence of others substances. These practices are considered doping, and are therefore prohibited by the International Olympic Committee and the World Antidoping Agency. Consequently, drug testing procedures are essential. The present work provides an overview of plasma volume expanders, assembling pertinent data such as chemical characteristics, physiological aspects, adverse effects, doping and analytical detection methods, which are currently dispersed in the literature.
Collapse
|
7
|
Microwave irradiation for a fast gas chromatography–mass spectrometric analysis of polysaccharide-based plasma volume expanders in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3024-32. [DOI: 10.1016/j.jchromb.2010.08.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022]
|
8
|
Affiliation(s)
- Rudhard Klaus Müller
- Institute of Forensic Medicine/Toxicology, Leipzig University, Johannisallee 28, D-04103, Leipzig, Germany.
| |
Collapse
|
9
|
Guddat S, Thevis M, Thomas A, Schänzer W. Rapid screening of polysaccharide‐based plasma volume expanders dextran and hydroxyethyl starch in human urine by liquid chromatography–tandem mass spectrometry. Biomed Chromatogr 2008; 22:695-701. [DOI: 10.1002/bmc.986] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Hemmersbach P. History of mass spectrometry at the Olympic Games. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:839-853. [PMID: 18570181 DOI: 10.1002/jms.1445] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry has played a decisive role in doping analysis and doping control in human sport for almost 40 years. The standard of qualitative and quantitative determinations in body fluids has always attracted maximum attention from scientists. With its unique sensitivity and selectivity properties, mass spectrometry provides state-of-the-art technology in analytical chemistry. Both anti-doping organizations and the athletes concerned expect the utmost endeavours to prevent false-positive and false-negative results of the analytical evidence. The Olympic Games play an important role in international sport today and are milestones for technical development in doping analysis. This review of the part played by mass spectrometry in doping control from Munich 1972 to Beijing 2008 Olympics gives an overview of how doping analysis has developed and where we are today. In recognizing the achievements made towards effective doping control, it is of the utmost importance to applaud the joint endeavours of the World Anti-Doping Agency, the International Olympic Committee, the international federations and national anti-doping agencies to combat doping. Advances against the misuse of prohibited substances and methods, which are performance-enhancing, dangerous to health and violate the spirit of sport, can be achieved only if all the stakeholders work together.
Collapse
|
11
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:127-38. [PMID: 17199253 PMCID: PMC7166443 DOI: 10.1002/jms.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of mass spectrometry. Each bibliography is divided into 11 sections: 1 Books, Reviews & Symposia; 2 Instrumental Techniques & Methods; 3 Gas Phase Ion Chemistry; 4 Biology/Biochemistry: Amino Acids, Peptides & Proteins; Carbohydrates; Lipids; Nucleic Acids; 5 Pharmacology/Toxicology; 6 Natural Products; 7 Analysis of Organic Compounds; 8 Analysis of Inorganics/Organometallics; 9 Surface Analysis; 10 Environmental Analysis; 11 Elemental Analysis. Within each section, articles are listed in alphabetical order with respect to author (6 Weeks journals ‐ Search completed at 4th. Oct. 2006)
Collapse
|