1
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
2
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
3
|
Stability Indicating HPLC-ECD Method for the Analysis of Clarithromycin in Pharmaceutical Dosage Forms: Method Scaling versus Re-Validation. Sci Pharm 2019. [DOI: 10.3390/scipharm87040031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
Collapse
|
4
|
Sherazi STH, Mahesar SA, Sirajuddin, Malah MA. Brief Overview of Frequently used Macrolides and Analytical Techniques for their Assessment. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Macrolide antibiotics are known as versatile broad-spectrum antibiotics.
Macrolides belong to the oldest group of antibacterial agents. The macrolides which are frequently
used for clinical purposes are broadly categorized in three classes depending on the number of
membered macrocyclic lactone ring. These three classes actually consist of 14, 15 or 16 atoms in macrocyclic
lactone ring which are linked through glycosidic bonds. Erythromycin, azithromycin clarithromycin
and roxithromycin are frequently used to control against bacterial infections.
Methods:
The quality assurance and quality controls are important tasks in the pharmaceutical industries.
Consequently, to check the quality of drugs, there is a strong need to know about alternative
analytical methods for the routine analysis. Many methods have been reported in the literature for the
quantitative determination of erythromycin, clarithromycin, azithromycin and clarithromycin in
pharmaceutical formulations and biological samples.
Results:
This review will cover a brief introduction of erythromycin, azithromycin, clarithromycin and
roxithromycin as well as analytical techniques for their assessment. Each developed method has its
own merits and demerits.
Conclusion:
Any accurate method could be used for the quality control and quality assurance of
macrolide antibiotics according to the availability, performance and procedure of selected instrument
as well as skill and expertise of the analyst.
Collapse
Affiliation(s)
| | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Pakistan
| | - Sirajuddin
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Pakistan
| | - Muhammad Ali Malah
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Pakistan
| |
Collapse
|
5
|
Raju KSR, Gundeti M, Malik MY, Kadian N, Rashid M, Taneja I, Singh SP, Wahajuddin M. Bioanalysis of antitubercular drugs using liquid chromatography. J Pharm Biomed Anal 2016; 134:295-309. [PMID: 27951471 DOI: 10.1016/j.jpba.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Tuberculosis is a life threatening disease and second to HIV in terms of deaths due to infectious diseases. Drug resistance development of the first-line drugs is a major concern in the treatment of this disease. There is no comprehensive and critical review in the literature of the bioanalytical methods for the determination of anti-tubercular agents from last two decades. This work offers a detailed account on the liquid chromatographic methods reported in the literature for the estimation of various anti-tubercular drugs. Major emphasis is given to sample preparation process, sensitivity of method, chromatographic separation conditions and detection systems used in their bioanalysis.
Collapse
Affiliation(s)
- Kanumuri Siva Rama Raju
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manoj Gundeti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Mohd Yaseen Malik
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Naveen Kadian
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mamunur Rashid
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Isha Taneja
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
6
|
Kanakapura B, Penmatsa VK. A Review of Analytical Methods for the Determination of Nateglinide in Pharmaceuticals and Biological Samples. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1386-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tsai D, Jamal JA, Davis JS, Lipman J, Roberts JA. Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 2015; 54:243-60. [PMID: 25385446 DOI: 10.1007/s40262-014-0209-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal antibacterial dosing is imperative for maximising clinical outcome. Many factors can contribute to changes in the pharmacokinetics of antibacterials to the extent where dose adjustment may be needed. In acute illness, substantial changes in important pharmacokinetic parameters such as volume of distribution and clearance can occur for certain antibacterials. The possibility of interethnic pharmacokinetic differences can further complicate attempts to design an appropriate dosing regimen. Factors of ethnicity, such as genetics, body size and fat distribution, contribute to differences in absorption, distribution, metabolism and elimination of drugs. Despite extensive previous work on the altered pharmacokinetics of antibacterials in some patient groups such as the critically ill, knowledge of interethnic pharmacokinetic differences for antibacterials is limited. OBJECTIVES This systematic review aims to describe any pharmacokinetic differences in antibacterials between different ethnic groups, and discuss their probable mechanisms as well as any clinical implications. METHODS We performed a structured literature review to identify and describe available data of the interethnic differences in the pharmacokinetics of antibacterials. RESULTS We found 50 articles that met our inclusion criteria and only six of these compared antibacterial pharmacokinetics between different ethnicities within the same study. Overall, there was limited evidence available. We found that interethnic pharmacokinetic differences are negligible for carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin, whereas significant difference is likely for ciprofloxacin, macrolides, clindamycin, tinidazole and some cephalosporins. In general, subjects of Asian ethnicity achieve drug exposures up to two to threefold greater than Caucasian counterparts for these antibacterials. This difference is caused by a comparatively lower volume of distribution and/or drug clearance. CONCLUSION Interethnic pharmacokinetic differences of antibacterials are likely; however, the clinical relevance of these differences is unknown and warrants further research.
Collapse
Affiliation(s)
- Danny Tsai
- Burns, Trauma and Critical Care Research Centre, School of Medicine, The University of Queensland, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | | | | | | | | |
Collapse
|
8
|
Chepyala D, Tsai IL, Sun HY, Lin SW, Kuo CH. Development and validation of a high-performance liquid chromatography-fluorescence detection method for the accurate quantification of colistin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 980:48-54. [DOI: 10.1016/j.jchromb.2014.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022]
|
9
|
Human saliva-based quantitative monitoring of clarithromycin by flow injection chemiluminescence analysis: a pharmacokinetic study. Appl Biochem Biotechnol 2013; 172:1320-31. [PMID: 24166104 DOI: 10.1007/s12010-013-0605-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/18/2013] [Indexed: 01/30/2023]
Abstract
Human saliva quantitative monitoring of clarithromycin (CLA) by chemiluminescence (CL) with flow injection analysis was proposed for the first time, which was based on the quenching effect of CLA on luminol-bovine serum albumin (BSA) CL system with a linear range from 7.5 × 10(-4) to 2.0 ng/ml. This proposed approach, offering a maximum sample throughput of 100 h(-1), was successfully applied to the quantitative monitoring of CLA levels in human saliva during 24 h after a single oral dose of 250 mg intake, with recoveries of 95.2 ∼ 109.0% and relative standard deviations lower than 6.5 % (N = 7). Results showed that CLA reached maximum concentration of 2.28 ± 0.02 μg/ml at approximately 3 h, and the total elimination ratio was 99.6 % in 24 h. The pharmacokinetic parameters including absorption rate constant (0.058 ± 0.006 h(-1)), elimination rate constant (0.149 ± 0.009 h(-1)) and elimination half-life time (4.66 ± 0.08 h) were obtained. A comparison of human saliva and urine monitoring was also given. The mechanism study of BSA-CLA interaction revealed the binding of CLA to BSA is an entropy driven and spontaneous process through hydrophobic interaction, with binding constant K BSA-CLA of 4.78 × 10(6) l/mol and the number of binding sites n of 0.82 by flow injection-chemiluminescence model. Molecular docking analysis further showed CLA might be in subdomain IIA of BSA, with K BSA-CLA of 6.82 × 10(5) l/mol and ΔG of -33.28 kJ/mol.
Collapse
|
10
|
Shah J, Jan MR, Manzoor S. Extractive Spectrophotometric Methods for Determination of Clarithromycin in Pharmaceutical Formulations Using Bromothymol Blue and Cresol Red. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200800162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Darwish KM, Salama I, Mostafa S, El-Sadek M. RP-HPLC/Pre-Column Derivatization for Analysis of Omeprazole, Tinidazole, Doxycycline and Clarithromycin. J Chromatogr Sci 2012; 51:566-76. [DOI: 10.1093/chromsci/bms167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Mohammadi B, Majnooni MB, Khatabi PM, Jalili R, Bahrami G. 9-Fluorenylmethyl chloroformate as a fluorescence-labeling reagent for derivatization of carboxylic acid moiety of sodium valproate using liquid chromatography/tandem mass spectrometry for binding characterization: A human pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 880:12-8. [DOI: 10.1016/j.jchromb.2011.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 11/27/2022]
|
13
|
El-Enany NM, Abdelal A, Belal F. Spectrofluorimetric determination of sertraline in dosage forms and human plasma through derivatization with 9-fluorenylmethyl chloroformate. Chem Cent J 2011; 5:56. [PMID: 21978386 PMCID: PMC3212809 DOI: 10.1186/1752-153x-5-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sertraline is primarily used to treat major depression in adult outpatients as well as obsessive-compulsive, panic and social anxiety disorders in both adults and children. A survey of the literature reveals that most of the reported methods are either insufficiently sensitive or tedious and require highly sophisticated and dedicated instrumentation. The proposed method is considered to be specific for determination of SER in presence of its metabolite (deaminated form). RESULTS A sensitive, simple and specific spectrofluorimetric method was developed for the determination of sertraline (SER) in pharmaceutical formulations and biological fluids. The method is based on its reaction with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer of pH 8.0 to yield a highly fluorescent derivative peaking at 315 nm after excitation at 265 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence concentration plot was rectilinear over the range of 0.05-1.0 μg mL-1 with a lower detection limit of 5.34 × 10-3 μg mL-1 and limit of quantitation of 0.016 μg mL-1. CONCLUSIONS The proposed method was successfully applied to the analysis of commercial tablets and the results obtained were in good agreement with those obtained using the reference method. Furthermore, the method was applied for the determination of SER in spiked and real human plasma. The mean % recovery (n = 3) was 94.33 ± 1.53 and 92.00 ± 2.65, respectively. A proposal of the reaction pathway was postulated.
Collapse
Affiliation(s)
- Nahed M El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt.
| | | | | |
Collapse
|
14
|
Oswald S, Peters J, Venner M, Siegmund W. LC–MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J Pharm Biomed Anal 2011; 55:194-201. [DOI: 10.1016/j.jpba.2011.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
15
|
Shen Y, Yin C, Su M, Tu J. Rapid, sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the quantification of topically applied azithromycin in rabbit conjunctiva tissues. J Pharm Biomed Anal 2010; 52:99-104. [DOI: 10.1016/j.jpba.2009.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
16
|
Simplified method for determination of clarithromycin in human plasma using protein precipitation in a 96-well format and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:130-4. [PMID: 18639501 DOI: 10.1016/j.jchromb.2008.06.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 01/23/2023]
Abstract
A simplified method to determine clarithromycin concentrations in human plasma using protein precipitation in a 96-well plate and liquid chromatography-tandem mass spectrometry was developed and validated. Plasma proteins were precipitated with acetonitrile and roxithromycin was used as the internal standard. After vortex mixing and centrifugation, the supernatants were directly injected onto a Phenomenex Luna Phenyl-Hexyl column (50 mm x 2.0 mm ID, 3 microm). The mobile phase consisted of water and methanol (30:70, v/v) containing 0.1% formic acid and 5mM ammonium acetate. The flow rate was 0.22 mL/min and the total run time (injection to injection) was less than 3 min. Detection of the analytes was achieved using positive ion electrospray tandem mass spectrometry in selected reaction monitoring (SRM) mode. The linear standard curve ranged from 100 to 5000 ng/mL and the precision and accuracy (inter- and intra-run) were within 7.9% and 4.9%, respectively. The method was successfully used to determine clarithromycin concentrations in human plasma samples obtained from healthy subjects who were given clarithromycin 500 mg for 3 days. The method is rapid, simple, precise and directly applicable to clarithromycin pharmacokinetic studies.
Collapse
|
17
|
Malli D, Gikas E, Vavagiannis A, Kazanis M, Daniilides K, Gennimata D, Panderi I. Determination of nateglinide in human plasma by high-performance liquid chromatography with pre-column derivatization using a coumarin-type fluorescent reagent. Anal Chim Acta 2007; 599:143-50. [PMID: 17765074 DOI: 10.1016/j.aca.2007.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 12/01/2022]
Abstract
A sensitive and selective high-performance liquid chromatographic method has been developed and validated for the determination of nateglinide in human plasma. Nateglinide and the internal standard, undecylenic acid, were extracted from plasma by liquid-liquid extraction using a mixture of ethyl acetate-diethyl ether, 50:50 (v/v). Pre-column derivatization reaction was performed using a coumarin-type fluorescent reagent, N-(7-methoxy-4-methyl-2-oxo-2H-6-chromenyl)-2-bromoacetamide. The derivatization proceeded in acetone in the presence of potassium carbonate and catalyzed by 18-crown-6 ether. The fluorescent derivatives were separated under isocratic conditions on a Hypersil BDS-C8 analytical column (250.0 mm x 2.1 mm i.d., particle size 5 microm) with a mobile phase that consisted of 65% acetonitrile in water and pumped at a flow rate of 0.50 mL min(-1). The excitation and emission wavelengths were set at 345 and 435 nm, respectively. The assay was linear over a concentration range of 0.05-16.00 microg mL(-1) for nateglinide with a limit of quantitation of 0.05 microg mL(-1). Quality control samples (0.05, 4.50 and 16.00 microg mL(-1)) in five replicates from five different runs of analysis demonstrated intra-assay precision (%coefficient of variation <6.8%), inter-assay precision (%coefficient of variation <1.6%) and an overall accuracy (%relative error) less than -3.4%. The method can be used to quantify nateglinide in human plasma covering a variety of pharmacokinetic or bioequivalence studies.
Collapse
Affiliation(s)
- Danai Malli
- University of Athens, School of Pharmacy, Division of Pharmaceutical Chemistry, Panepistimiopolis, Zografou, GR-157 71 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|