1
|
van Vugt-Lussenburg BMA, Capinha L, Reinen J, Rooseboom M, Kranendonk M, Onderwater RCA, Jennings P. " Commandeuring" Xenobiotic Metabolism: Advances in Understanding Xenobiotic Metabolism. Chem Res Toxicol 2022; 35:1184-1201. [PMID: 35768066 PMCID: PMC9297329 DOI: 10.1021/acs.chemrestox.2c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The understanding
of how exogenous chemicals (xenobiotics) are
metabolized, distributed, and eliminated is critical to determine
the impact of the chemical and its metabolites to the (human) organism.
This is part of the research and educational discipline ADMET (absorption,
distribution, metabolism, elimination, and toxicity). Here, we review
the work of Jan Commandeur and colleagues who have not only made a
significant impact in understanding of phase I and phase II metabolism
of several important compounds but also contributed greatly to the
development of experimental techniques for the study of xenobiotic
metabolism. Jan Commandeur’s work has covered a broad area
of research, such as the development of online screening methodologies,
the use of a combination of enzyme mutagenesis and molecular modeling
for structure–activity relationship (SAR) studies, and the
development of novel probe substrates. This work is the bedrock of
current activities and brings the field closer to personalized (cohort-based)
pharmacology, toxicology, and hazard/risk assessment.
Collapse
Affiliation(s)
| | - Liliana Capinha
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jelle Reinen
- Charles River Den Bosch, Hambakenwetering 7, 5203 DL Hertogenbosch, The Netherlands
| | - Martijn Rooseboom
- Shell Global Solutions International B.V., 1030 BN The Hague, The Netherlands
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | | - Paul Jennings
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Guo PC, Shen HD, Fang JJ, Ding TM, Ding XP, Liu JF. On-line high-performance liquid chromatography coupled with biochemical detection method for screening of α-glucosidase inhibitors in green tea. Biomed Chromatogr 2018; 32:e4281. [PMID: 29744906 DOI: 10.1002/bmc.4281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
An on-line high-performance liquid chromatography-biochemical detection (HPLC-BCD) method, in which compounds separated by HPLC were on-line reacted with enzyme and substrate solutions delivered by flow injection and the enzyme inhibition signal was collected by UV detection, was developed to rapidly screen α-glucosidase inhibitors from green tea extracts in this study. The chromatographic fingerprints and enzyme inhibition profiles of the different brands of green tea could be simultaneously detected by the on-line HPLC-BCD method. Enzyme inhibition profiles were detected by the UV detector at 415 nm based on the reaction of α-glucosidase and p-nitrophenyl α-d-glucopyranoside (PNPG). PNPG (1.25 mm), α-glucosidase (0.4 U/mL) and the flow rate 0.07 mL/min were applied as optimized parameters to detect α-glucosidase inhibitors in green tea. Four components in green tea showed α-glucosidase inhibition action and three of them were identified as HHDP-galloyl glucose, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Two brands of green tea derived from Mengding and Enshi mountainous areas might be superior to the other samples in the prevention and treatment of diabetes owing to their stronger activities of enzyme inhibitors. The proposed on-line HPLC-BCD method could be used to rapidly identify the potential enzyme inhibitors in complex matrixes.
Collapse
Affiliation(s)
| | - Hua-Dan Shen
- Hubei University of Chinese Medicine, Wuhan, China
| | | | | | | | - Jun-Feng Liu
- Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Zietek BM, Mladic M, Bruyneel B, Niessen WMA, Honing M, Somsen GW, Kool J. Nanofractionation Platform with Parallel Mass Spectrometry for Identification of CYP1A2 Inhibitors in Metabolic Mixtures. SLAS DISCOVERY 2017; 23:283-293. [PMID: 29262760 DOI: 10.1177/2472555217746323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With early assessment of inhibitory properties of drug candidates and their circulating metabolites toward cytochrome P450 enzymes, drug attrition, especially later in the drug development process, can be decreased. Here we describe the development and validation of an at-line nanofractionation platform, which was applied for screening of CYP1A2 inhibitors in Phase I metabolic mixtures. With this platform, a metabolic mixture is separated by liquid chromatography (LC), followed by parallel nanofractionation on a microtiter well plate and mass spectrometry (MS) analysis. After solvent evaporation, all metabolites present in the nanofractionated mixture are assayed utilizing a fluorescence CYP1A2 inhibition bioassay performed on the plate. Next, a bioactivity chromatogram is constructed from the bioassay results. By peak shape and retention time correlation of the bioactivity peaks with the obtained MS data, CYP1A2-bioactive inhibiting metabolites can be identified. The method correctly evaluated the potency of five CYP1A2 inhibitors. Mixtures comprising potent inhibitors of CYP1A2 or in vitro-generated metabolites of ellipticine were evaluated for their inhibitory bioactivities. In both cases, good LC separation of all compounds was achieved and bioactivity data could be accurately correlated with the parallel recorded MS data. Generation and evaluation of Phase II metabolites of hydroxylated ellipticine was also pursued.
Collapse
Affiliation(s)
- Barbara M Zietek
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marija Mladic
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ben Bruyneel
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilfried M A Niessen
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,3 hyphen MassSpec, Voorhout, Netherlands
| | - Maarten Honing
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,2 DSM Materials Science Center, Geleen, Netherlands
| | - Govert W Somsen
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kool
- 1 Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Ramjee MK, Patel S. Continuous-flow injection microfluidic thrombin assays: The effect of binding kinetics on observed enzyme inhibition. Anal Biochem 2017; 528:38-46. [PMID: 28456636 DOI: 10.1016/j.ab.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/28/2023]
Abstract
A microfluidic assay for monitoring the inhibition of thrombin peptidase activity was developed. The system, which utilised soluble reagents in continuous-flow injection mode, was configured so as to allow inhibitor titrations via gradient formation. This microfluidic continuous-flow injection titration assay (CFITA) enabled the potency of a set of small-molecule serine peptidase inhibitors (SPIs) to be evaluated. The results, compared to standard microtiter plate (MTP) data, indicated that a microfluidic CFITA provided an efficient and effective method for evaluating compound potency. Crucially, whereas for fast-acting compounds the rank order of potency between the CFITA and MTP methods was preserved, for slow-acting compounds the observed CFITA potencies were significantly lower. These results, in conjunction with data from computer simulations, clearly demonstrated that continuous-flow assays, and perhaps microfluidic assays in general, must take into account binding kinetics when used to assess reaction criteria.
Collapse
Affiliation(s)
- Manoj K Ramjee
- Cyclofluidic Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom.
| | - Sital Patel
- Cyclofluidic Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom
| |
Collapse
|
5
|
Otvos RA, Mladic M, Arias-Alpizar G, Niessen WMA, Somsen GW, Smit AB, Kool J. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor. ACTA ACUST UNITED AC 2016; 21:459-67. [DOI: 10.1177/1087057115625307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer’s disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca2+)-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii. The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives.
Collapse
Affiliation(s)
- Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marija Mladic
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gabriela Arias-Alpizar
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- hyphen MassSpec, Warmond, the Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Peng WB, Tan JL, Huang DD, Ding XP. On-Line HPLC with Biochemical Detection for Screening Bioactive Compounds in Complex Matrixes. Chromatographia 2015. [DOI: 10.1007/s10337-015-2982-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Miniaturized bioaffinity assessment coupled to mass spectrometry for guided purification of bioactives from toad and cone snail. BIOLOGY 2014; 3:139-56. [PMID: 24833338 PMCID: PMC4009767 DOI: 10.3390/biology3010139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
A nano-flow high-resolution screening platform, featuring a parallel chip-based microfluidic bioassay and mass spectrometry coupled to nano-liquid chromatography, was applied to screen animal venoms for nicotinic acetylcholine receptor like (nAChR) affinity by using the acetylcholine binding protein, a mimic of the nAChR. The potential of this microfluidic platform is demonstrated by profiling the Conus textile venom proteome, consisting of over 1,000 peptides. Within one analysis (<90 min, 500 ng venom injected), ligands are detected and identified. To show applicability for non-peptides, small molecular ligands such as steroidal ligands were identified in skin secretions from two toad species (Bufo alvarius and Bufo marinus). Bioactives from the toad samples were subsequently isolated by MS-guided fractionation. The fractions analyzed by NMR and a radioligand binding assay with α7-nAChR confirmed the identity and bioactivity of several new ligands.
Collapse
|
8
|
Falck D, Schebb NH, Prihatiningtyas S, Zhang J, Heus F, Morisseau C, Kool J, Hammock BD, Niessen WMA. Development of On-line Liquid Chromatography-Biochemical Detection for Soluble Epoxide Hydrolase Inhibitors in Mixtures. Chromatographia 2013; 76:13-21. [PMID: 23526703 DOI: 10.1007/s10337-012-2343-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, an end-point-based fluorescence assay for soluble epoxide hydrolase (sEH) was transformed into an on-line continuous-flow format. The on-line biochemical detection system (BCD) was coupled on-line to liquid chromatography (LC) to allow mixture analysis. The on-line BCD was based on a flow system wherein sEH activity was detected by competition of analytes with the substrate hydrolysis. The reaction product was measured by fluorescence detection. In parallel to the BCD data, UV and MS data were obtained through post-column splitting of the LC effluent. The buffer system and reagent concentrations were optimized resulting in a stable on-line BCD with a good assay window and good sensitivity (S/N > 60). The potency of known sEH inhibitors (sEHis) obtained by LC-BCD correlates well with published values. The LC-BCD system was applied to test how oxidative microsomal metabolism affects the potency of three sEHis. After incubation with pig liver microsomes, several metabolites of sEHis were characterized by MS, while their individual potencies were measured by BCD. For all compounds tested, active metabolites were observed. The developed method allows for the first time the detection of sEHis in mixtures providing new opportunities in the development of drug candidates.
Collapse
Affiliation(s)
- David Falck
- Department of BioMolecular Analysis, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kool J, Heus F, de Kloe G, Lingeman H, Smit AB, Leurs R, Edink E, De Esch IJP, Irth H, Niessen WMA. High-Resolution Bioactivity Profiling of Mixtures toward the Acetylcholine Binding Protein Using a Nanofractionation Spotter Technology. ACTA ACUST UNITED AC 2011; 16:917-24. [DOI: 10.1177/1087057111413921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study describes the evaluation, validation, and use of contactless postcolumn fractionation of bioactive mixtures with acetylcholine binding protein (AChBP) affinity analysis with help of a spotter technology. The high-resolution fractionation tailors the fractionation frequency to the chromatographic peaks. Postcolumn reagents for AChBP bioaffinity profiling are mixed prior to droplet ejection into 1536-well plates. After an incubation step, microplate reader analysis is used to determine bioactive compounds in a mixture. For ligands tested, a good correlation was found for IC50s determined in flow injection analysis mode when compared with traditional radioligand binding assays. After the evaluation and validation, bioaffinity profiling of actual mixtures was performed. The advantage of this “atline” technology using postcolumn bioaffinity analysis when compared to continuous flow online postcolumn bioaffinity profiling is the possibility to choose postcolumn incubation times freely without compromising resolution due to diffusion effects.
Collapse
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Ferry Heus
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Gerdien de Kloe
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Henk Lingeman
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rob Leurs
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Ewald Edink
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Iwan J. P. De Esch
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Hubertus Irth
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Wilfried M. A. Niessen
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Reinen J, Ferman S, Vottero E, Vermeulen NPE, Commandeur JNM. Application of a fluorescence-based continuous-flow bioassay to screen for diversity of cytochrome P450 BM3 mutant libraries. ACTA ACUST UNITED AC 2011; 16:239-50. [PMID: 21297109 DOI: 10.1177/1087057110394180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fluorescence-based continuous-flow enzyme affinity detection (EAD) setup was used to screen cytochrome P450 BM3 mutants on-line for diversity. The flow-injection screening assay is based on the BM3-mediated O-dealkylation of alkoxyresorufins forming the highly fluorescent product resorufin, and can be used in different configurations, namely injection of ligands, enzymes and substrates. Screening conditions were optimized and the activity of a library of 32 BM3 mutants towards the recently synthesized new probe substrate allyloxyresorufin was measured in flow-injection analysis (FIA) mode and it was shown that large activity differences between the mutants existed. Next, six BM3 mutants containing mutations at different positions in the active site were selected for which on-line enzyme kinetics were determined. Subsequently, for these six BM3 mutants affinity towards a set of 30 xenobiotics was determined in FIA EAD mode. It was demonstrated that significant differences existed for the affinity profiles of the mutants tested and that these differences correlated to alterations in the BM3 mutant-generated metabolic profiles of the drug buspirone. In conclusion, the developed FIA EAD approach is suitable to screen for diversity within BM3 mutants and this alternative screening technology offers new perspectives for rapid and sensitive screening of compound libraries towards BM3 mutants.
Collapse
Affiliation(s)
- Jelle Reinen
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures. Anal Bioanal Chem 2010; 399:2655-68. [PMID: 21107824 PMCID: PMC3043236 DOI: 10.1007/s00216-010-4406-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/29/2010] [Accepted: 10/31/2010] [Indexed: 10/29/2022]
Abstract
In the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets-pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches.
Collapse
|
12
|
Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: the body in a Hilbertian space. Drug Discov Today 2009; 14:406-12. [DOI: 10.1016/j.drudis.2009.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|